The paragraph above was written by an AI-powered text generator called neuroflash https://app.neuro-flash.com/home which I told to produce a text on the topic ‘AI and education’. As texts on this topic go, it is both remarkable (in that it was not written by a human) and entirely unremarkable (in that it is practically indistinguishable from hundreds of human-written texts on the same subject). Neuroflash uses a neural network technology called GPT-3 – ‘a large language model’ – and ‘one of the most interesting and important AI systems ever produced’ (Chalmers, 2020). Basically, it generates text by predicting sequences of words based on huge databases. The nature of the paragraph above tells you all you need to know about the kinds of content that are usually found in texts about AI and education.

Not dissimilar from the neuroflash paragraph, educational commentary on uses of AI is characterised by (1) descriptions of AI tools already in use (e.g. speech recognition and machine translation) and (2) vague predictions which invariably refer to ‘the promise of personalised learning, adjusting what we give learners according to what they need to learn and keeping them motivated by giving them content that is of interest to them’ (Hughes, 2022). The question of what precisely will be personalised is unanswered: providing learners with optimal sets of resources (but which ones?), providing counselling services, recommendations or feedback for learners and teachers (but of what kind?) (Luckin, 2022). Nearly four years ago, I wrote https://adaptivelearninginelt.wordpress.com/2018/08/13/ai-and-language-teaching/ about the reasons why these questions remain unanswered. The short answer is that AI in language learning requires a ‘domain knowledge model’. This specifies what is to be learnt and includes an analysis of the steps that must be taken to reach that learning goal. This is lacking in SLA, or, at least, there is no general agreement on what it is. Worse, the models that are most commonly adopted in AI-driven programs (e.g. the deliberate learning of discrete items of grammar and vocabulary) are not supported by either current theory or research (see, for example, VanPatten & Smith, 2022).

In 2021, the IATEFL Learning Technologies SIG organised an event dedicated to AI in education. Unsurprisingly, there was a fair amount of input on AI in assessment, but my interest is in how AI might revolutionize how we learn and teach, not how we assess. What concrete examples did speakers provide?

Rose Luckin, the most well-known British expert on AI in education, kicked things off by mentioning three tools. One of these, Carnegie Learning, is a digital language course that looks very much like any of the ELT courses on offer from the big publishers – a fully blendable, multimedia (e.g. flashcards and videos) synthetic syllabus. This ‘blended learning solution’ is personalizable, since ‘no two students learn alike’, and, it claims, will develop a ‘lifelong love of language’. It appears to be premised on the idea of language learning as optimizing the delivery of ‘content’, of this content consisting primarily of discrete items, and of equating input with uptake. Been there, done that.

A second was Alelo Enskill https://www.alelo.com/about-us/ a chatbot / avatar roleplay program, first developed by the US military to teach Iraqi Arabic and aspects of Iraqi culture to Marines. I looked at the limitations of chatbot technology for language learning here https://adaptivelearninginelt.wordpress.com/2016/12/01/chatbots/ . The third tool mentioned by Luckin was Duolingo. Enough said.

Another speaker at this event was the founder and CEO of Edugo.AI https://www.edugo.ai/ , an AI-powered LMS which uses GPT-3. It allows schools to ‘create and upload on the platform any kind of language material (audio, video, text…). Our AI algorithms process and convert it in gamified exercises, which engage different parts of the brain, and gets students eager to practice’. Does this speaker know anything about gamification (for a quick read, I’d recommend Paul Driver (2012)) or neuroscience, I wonder. What, for that matter, does he know about language learning? Apparently, ‘language is not just about words, language is about sentences’ (Tomasello, 2022). Hmm, this doesn’t inspire confidence.

When you look at current uses of AI in language learning, there is very little (outside of testing, translation and speech ↔ text applications) that could justify enthusiastic claims that AI has any great educational potential. Skepticism seems to me a more reasonable and scientific response: de omnibus dubitandum.

Education is not the only field where AI has been talked up. When Covid hit us, AI was seen as the game-changing technology. It ‘could be deployed to make predictions, enhance efficiencies, and free up staff through automation; it could help rapidly process vast amounts of information and make lifesaving decisions’ (Chakravorti, 2022). The contribution of AI to the development of vaccines has been huge, but its role in diagnosing and triaging patients has been another matter altogether. Hundreds of predictive tools were developed: ‘none of them made a real difference, and some were potentially harmful’ (Heaven, 2021). Expectations were unrealistic and led to the deployment of tools before they were properly trialled. Thirty months down the line, a much more sober understanding of the potential of AI has emerged. Here, then, are the main lessons that have been learnt (I draw particularly on Engler, 2020, and Chakravorti, 2022) that are also relevant to education and language learning.

  • Anticipate what could go wrong before anticipating what might go right. Engler (2020) writes that ‘a poorly kept secret of AI practitioners is that 96% accuracy is suspiciously high for any machine learning problem’. In language learning, it is highly unlikely that personalized recommendations will ever reach anything even approaching this level of reliability. What are the implications for individual learners whose learning is inappropriately personalised?
  • We also know that a significant problem with AI systems is bias (O’Neil, 2016). There is a well-documented history of discriminatory outcomes because of people’s race, gender, social class or disability profile. Bias needs to be addressed proactively, not reactively.
  • Acknowledge from the outset that, for AI to work, huge amounts of data related to prior outcomes will be needed. In the cases of both Covid and language learning, much of this data will be personal. This raises immediate questions of privacy and consent, especially for learners who are children. Don’t minimise this issue.
  • Common by-products of AI use include insecure data storage, digital surveillance and consolidation of market power (Engler, 2020). Since such issues are so pervasive, assume they will be a problem, and need to be considered in evaluating the potential of any piece of AI edtech.
  • Find out what the subject matter experts have to say: ‘AI is only helpful when applied judiciously by subject-matter experts—people with long-standing experience with the problem that they are trying to solve […] Effectively predicting a badly defined problem is worse than doing nothing at all’ (Engler, 2020). It may be that the problem the AI is trying to help solve is the wrong problem and not worth solving at all (e.g. more efficient ‘delivery’ of explicit grammatical knowledge, gamifying gapfills).

To bring this post to an end, I returned to the AI / GTP-3 driven neuroflash program. This time, I asked it to write a longer piece entitled ‘The dangers of artificial intelligence in education: what could go wrong?’. Here’s what it came up with:

There are a few potential dangers of artificial intelligence in education. One is that AI could be used to replace human teachers. This could lead to a decline in the quality of education, as machines are not yet capable of replicating the full range of human emotions and social interactions that are necessary for teaching. Additionally, AI could be used to create biased or “racist” educational materials, as has already happened with some commercial software products. Finally, AI could be used to track and monitor students in ways that invade their privacy, or that could be used to manipulate their behavior.

All of these dangers are real and should be taken seriously. However, it’s important to remember that AI is still a new technology, and its impact on education is not yet fully understood. As such, we should tread cautiously when implementing AI into our educational systems.

When it comes to education, artificial intelligence could be a double-edged sword. While AI has the potential to revolutionize the field of education and help students learn in more efficient ways, there are also dangers that need to be considered.

One of the dangers of AI in education is that it could lead to a more standardized and homogenized form of learning. If all students are relying on AI-based learning tools, they may all end up learning the same things in the same way. This could lead to a loss of creativity and individuality in education.

Another danger is that AI-based learning tools could become too reliant on data and algorithms. This could lead to a situation where students are simply being taught what the machines think they should know, rather than being allowed to explore and discover new things for themselves.

Finally, there is the danger that AI could eventually replace human teachers altogether. While this may seem like a far-fetched scenario, it is not outside the realm of possibility. If AI-based learning tools become sophisticated enough, they may one day be able to do the job of teaching just as well as humans can.

These are just some of the dangers that need to be considered when it comes to artificial intelligence in education. While AI has the potential to revolutionize education, we need to be careful about how we implement it so that we don’t end up doing more harm than good.

References

Chakravorti, B. (2022) Why AI Failed to Live Up to Its Potential During the Pandemic. Harvard Business Review March 17,2022. https://hbr.org/2022/03/why-ai-failed-to-live-up-to-its-potential-during-the-pandemic

Chalmers, D. (2020) Weinberg, Justin (ed.). “GPT-3 and General Intelligence”. Daily Nous. Philosophers On GPT-3 (updated with replies by GPT-3) July 30, 2020. https://dailynous.com/2020/07/30/philosophers-gpt-3/#chalmers

Driver, P. (2012) The Irony of Gamification. In English Digital Magazine 3, British Council Portugal, pp. 21 – 24 http://digitaldebris.info/digital-debris/2011/12/31/the-irony-of-gamification-written-for-ied-magazine.html

Engler, A. (2020) A guide to healthy skepticism of artificial intelligence and coronavirus. Washington D.C.: Brookings Institution https://www.brookings.edu/research/a-guide-to-healthy-skepticism-of-artificial-intelligence-and-coronavirus/

Heaven, W. D. (2021) Hundreds of AI tools have been built to catch covid. None of them helped. MIT Technology Review, July 30, 2021. https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/

Hughes, G. (2022) What lies at the end of the AI rainbow? IATEFL LTSIG Newsletter Issue April 2022

Luckin, R. (2022) The implications of AI for language learning and teaching. IATEFL LTSIG Newsletter Issue April 2022

O’Neil, C. (2016) Weapons of Math Destruction. London: Allen Lane

Tomasello, G. (2022) Next Generation of AI-Language Education Software:NLP & Language Modules (GPT3). IATEFL LTSIG Newsletter Issue April 2022

VanPatten, B. & Smith, M. (2022) Explicit and Implicit Learning in Second Language Acquisition. Cambridge: Cambridge University Press

Comments
  1. Rob says:

    I work for a non-profit organization whose Board of Directors has instructed me to design and pilot a three-month English language learning program for primary school students, using Duolingo as the “engine” for the course. This blog has been invaluable as a resource for my work.

    If our Board were to comprehend the content of the relevant blog posts and embrace them as enthusiastically as they have Duolingo for Schools, we might actually make some progress.

    Thanks, Phillip, for your thought provoking and informative posts.

  2. eflnotes says:

    thanks for post Philip, your examples of AI text show a long running issue – to what extent are language teachers happy for their students to re-produce a 5 paragraph essay 🙂

    more seriously you are right i.e don’t believe the hype also i recommend this article to read why at least economic value (and arguably by extension educational value) will always be produced by human labour – https://cosmonautmag.com/2021/10/why-machines-dont-create-value/

    ta
    mura

  3. […] How to write about AI in language learning is from Adaptive Learning in ELT. It’s an interesting read. […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s