Archive for the ‘platforms’ Category

Take the Cambridge Assessment English website, for example. When you connect to the site, you will see, at the bottom of the screen, a familiar (to people in Europe, at least) notification about the site’s use of cookies: the cookies consent.

You probably trust the site, so ignore the notification and quickly move on to find the resource you are looking for. But if you did click on hyperlinked ‘set cookies’, what would you find? The first link takes you to the ‘Cookie policy’ where you will be told that ‘We use cookies principally because we want to make our websites and mobile applications user-friendly, and we are interested in anonymous user behaviour. Generally our cookies don’t store sensitive or personally identifiable information such as your name and address or credit card details’. Scroll down, and you will find out more about the kind of cookies that are used. Besides the cookies that are necessary to the functioning of the site, you will see that there are also ‘third party cookies’. These are explained as follows: ‘Cambridge Assessment works with third parties who serve advertisements or present offers on our behalf and personalise the content that you see. Cookies may be used by those third parties to build a profile of your interests and show you relevant adverts on other sites. They do not store personal information directly but use a unique identifier in your browser or internet device. If you do not allow these cookies, you will experience less targeted content’.

This is not factually inaccurate: personal information is not stored directly. However, it is extremely easy for this information to be triangulated with other information to identify you personally. In addition to the data that you generate by having cookies on your device, Cambridge Assessment will also directly collect data about you. Depending on your interactions with Cambridge Assessment, this will include ‘your name, date of birth, gender, contact data including your home/work postal address, email address and phone number, transaction data including your credit card number when you make a payment to us, technical data including internet protocol (IP) address, login data, browser type and technology used to access this website’. They say they may share this data ‘with other people and/or businesses who provide services on our behalf or at our request’ and ‘with social media platforms, including but not limited to Facebook, Google, Google Analytics, LinkedIn, in pseudonymised or anonymised forms’.

In short, Cambridge Assessment may hold a huge amount of data about you and they can, basically, do what they like with it.

The cookie and privacy policies are fairly standard, as is the lack of transparency in the phrasing of them. Rather more transparency would include, for example, information about which particular ad trackers you are giving your consent to. This information can be found with a browser extension tool like Ghostery, and these trackers can be blocked. As you’ll see below, there are 5 ad trackers on this site. This is rather more than other sites that English language teachers are likely to go to. ETS-TOEFL has 4, Macmillan English and Pearson have 3, CUP ELT and the British Council Teaching English have 1, OUP ELT, IATEFL, BBC Learning English and Trinity College have none. I could only find TESOL, with 6 ad trackers, which has more. The blogs for all these organisations invariably have more trackers than their websites.

The use of numerous ad trackers is probably a reflection of the importance that Cambridge Assessment gives to social media marketing. There is a research paper, produced by Cambridge Assessment, which outlines the significance of big data and social media analytics. They have far more Facebook followers (and nearly 6 million likes) than any other ELT page, and they are proud of their #1 ranking in the education category of social media. The amount of data that can be collected here is enormous and it can be analysed in myriad ways using tools like Ubervu, Yomego and Hootsuite.

A little more transparency, however, would not go amiss. According to a report in Vox, Apple has announced that some time next year ‘iPhone users will start seeing a new question when they use many of the apps on their devices: Do they want the app to follow them around the internet, tracking their behavior?’ Obviously, Google and Facebook are none too pleased about this and will be fighting back. The implications for ad trackers and online advertising, more generally, are potentially huge. I wrote to Cambridge Assessment about this and was pleased to hear that ‘Cambridge Assessment are currently reviewing the process by which we obtain users consent for the use of cookies with the intention of moving to a much more transparent model in the future’. Let’s hope that other ELT organisations are doing the same.

You may be less bothered than I am by the thought of dozens of ad trackers following you around the net so that you can be served with more personalized ads. But the digital profile about you, to which these cookies contribute, may include information about your ethnicity, disabilities and sexual orientation. This profile is auctioned to advertisers when you visit some sites, allowing them to show you ‘personalized’ adverts based on the categories in your digital profile. Contrary to EU regulations, these categories may include whether you have cancer, a substance-abuse problem, your politics and religion (as reported in Fortune ).

But it’s not these cookies that are the most worrying aspect about our lack of digital privacy. It’s the sheer quantity of personal data that is stored about us. Every time we ask our students to use an app or a platform, we are asking them to divulge huge amounts of data. With ClassDojo, for example, this includes names, usernames, passwords, age, addresses, photographs, videos, documents, drawings, or audio files, IP addresses and browser details, clicks, referring URL’s, time spent on site, and page views (Manolev et al., 2019; see also Williamson, 2019).

It is now widely recognized that the ‘consent’ that is obtained through cookie policies and other end-user agreements is largely spurious. These consent agreements, as Sadowski (2019) observes, are non-negotiated, and non-negotiable; you either agree or you are denied access. What’s more, he adds, citing one study, it would take 76 days, working for 8 hours a day, to read the privacy policies a person typically encounters in a year. As a result, most of us choose not to choose when we accept online services (Cobo, 2019: 25). We have little, if any, control over how the data that is collected is used (Birch et al., 2020). More importantly, perhaps, when we ask our students to sign up to an educational app, we are asking / telling them to give away their personal data, not just ours. They are unlikely to fully understand the consequences of doing so.

The extent of this ignorance is also now widely recognized. In the UK, for example, two reports (cited by Sander, 2020) indicate that ‘only a third of people know that data they have not actively chosen to share has been collected’ (Doteveryone, 2018: 5), and that ‘less than half of British adult internet users are aware that apps collect their location and information on their personal preferences’ (Ofcom, 2019: 14).

The main problem with this has been expressed by programmer and activist, Richard Stallman, in an interview with New York magazine (Kulwin, 2018): Companies are collecting data about people. The data that is collected will be abused. That’s not an absolute certainty, but it’s a practical, extreme likelihood, which is enough to make collection a problem.

The abuse that Smallman is referring to can come in a variety of forms. At the relatively trivial end is the personalized advertising. Much more serious is the way that data aggregation companies will scrape data from a variety of sources, building up individual data profiles which can be used to make significant life-impacting decisions, such as final academic grades or whether one is offered a job, insurance or credit (Manolev et al., 2019). Cathy O’Neil’s (2016) best-selling ‘Weapons of Math Destruction’ spells out in detail how this abuse of data increases racial, gender and class inequalities. And after the revelations of Edward Snowden, we all know about the routine collection by states of huge amounts of data about, well, everyone. Whether it’s used for predictive policing or straightforward repression or something else, it is simply not possible for younger people, our students, to know what personal data they may regret divulging at a later date.

Digital educational providers may try to reassure us that they will keep data private, and not use it for advertising purposes, but the reassurances are hollow. These companies may change their terms and conditions further down the line, and examples exist of when this has happened (Moore, 2018: 210). But even if this does not happen, the data can never be secure. Illegal data breaches and cyber attacks are relentless, and education ranked worst at cybersecurity out of 17 major industries in one recent analysis (Foresman, 2018). One report suggests that one in five US schools and colleges have fallen victim to cyber-crime. Two weeks ago, I learnt (by chance, as I happened to be looking at my security settings on Chrome) that my passwords for Quizlet, Future Learn, Elsevier and Science Direct had been compromised by a data breach. To get a better understanding of the scale of data breaches, you might like to look at the UK’s IT Governance site, which lists detected and publicly disclosed data breaches and cyber attacks each month (36.6 million records breached in August 2020). If you scroll through the list, you’ll see how many of them are educational sites. You’ll also see a comment about how leaky organisations have been throughout lockdown … because they weren’t prepared for the sudden shift online.

Recent years have seen a growing consensus that ‘it is crucial for language teaching to […] encompass the digital literacies which are increasingly central to learners’ […] lives’ (Dudeney et al., 2013). Most of the focus has been on the skills that are needed to use digital media. There also appears to be growing interest in developing critical thinking skills in the context of digital media (e.g. Peachey, 2016) – identifying fake news and so on. To a much lesser extent, there has been some focus on ‘issues of digital identity, responsibility, safety and ethics when students use these technologies’ (Mavridi, 2020a: 172). Mavridi (2020b: 91) also briefly discusses the personal risks of digital footprints, but she does not have the space to explore more fully the notion of critical data literacy. This literacy involves an understanding of not just the personal risks of using ‘free’ educational apps and platforms, but of why they are ‘free’ in the first place. Sander (2020b) suggests that this literacy entails ‘an understanding of datafication, recognizing the risks and benefits of the growing prevalence of data collection, analytics, automation, and predictive systems, as well as being able to critically reflect upon these developments. This includes, but goes beyond the skills of, for example, changing one’s social media settings, and rather constitutes an altered view on the pervasive, structural, and systemic levels of changing big data systems in our datafied societies’.

In my next two posts, I will, first of all, explore in more detail the idea of critical data literacy, before suggesting a range of classroom resources.

(I posted about privacy in March 2014, when I looked at the connections between big data and personalized / adaptive learning. In another post, September 2014, I looked at the claims of the CEO of Knewton who bragged that his company had five orders of magnitude more data about you than Google has. … We literally have more data about our students than any company has about anybody else about anything, and it’s not even close. You might find both of these posts interesting.)


Birch, K., Chiappetta, M. & Artyushina, A. (2020). ‘The problem of innovation in technoscientific capitalism: data rentiership and the policy implications of turning personal digital data into a private asset’ Policy Studies, 41:5, 468-487, DOI: 10.1080/01442872.2020.1748264

Cobo, C. (2019). I Accept the Terms and Conditions.

Doteveryone. (2018). People, Power and Technology: The 2018 Digital Attitudes Report.

Dudeney, G., Hockly, N. & Pegrum, M. (2013). Digital Literacies. Harlow: Pearson Education

Foresman, B. (2018). Education ranked worst at cybersecurity out of 17 major industries. Edscoop, December 17, 2018.

Kulwin, K. (2018). F*ck Them. We Need a Law’: A Legendary Programmer Takes on Silicon Valley, New York Intelligencer, 2018,

Manolev, J., Sullivan, A. & Slee, R. (2019). ‘Vast amounts of data about our children are being harvested and stored via apps used by schools’ EduReseach Matters, February 18, 2019.

Mavridi, S. (2020a). Fostering Students’ Digital Responsibility, Ethics and Safety Skills (Dress). In Mavridi, S. & Saumell, V. (Eds.) Digital Innovations and Research in Language Learning. Faversham, Kent: IATEFL. pp. 170 – 196

Mavridi, S. (2020b). Digital literacies and the new digital divide. In Mavridi, S. & Xerri, D. (Eds.) English for 21st Century Skills. Newbury, Berks.: Express Publishing. pp. 90 – 98

Moore, M. (2018). Democracy Hacked. London: Oneworld

Ofcom. (2019). Adults: Media use and attitudes report [Report].

O’Neil, C. (2016). Weapons of Math Destruction. London: Allen Lane

Peachey, N. (2016). Thinking Critically through Digital Media.

Sadowski, J. (2019). ‘When data is capital: Datafication, accumulation, and extraction’ Big Data and Society 6 (1)

Sander, I. (2020a). What is critical big data literacy and how can it be implemented? Internet Policy Review, 9 (2). DOI: 10.14763/2020.2.1479

Sander, I. (2020b). Critical big data literacy tools—Engaging citizens and promoting empowered internet usage. Data & Policy, 2: e5 doi:10.1017/dap.2020.5

Williamson, B. (2019). ‘Killer Apps for the Classroom? Developing Critical Perspectives on ClassDojo and the ‘Ed-tech’ Industry’ Journal of Professional Learning, 2019 (Semester 2)

Online teaching is big business. Very big business. Online language teaching is a significant part of it, expected to be worth over $5 billion by 2025. Within this market, the biggest demand is for English and the lion’s share of the demand comes from individual learners. And a sizable number of them are Chinese kids.

There are a number of service providers, and the competition between them is hot. To give you an idea of the scale of this business, here are a few details taken from a report in USA Today. VIPKid, is valued at over $3 billion, attracts celebrity investors, and has around 70,000 tutors who live in the US and Canada. 51Talk has 14,800 English teachers from a variety of English-speaking countries. BlingABC gets over 1,000 American applicants a month for its online tutoring jobs. There are many, many others.

Demand for English teachers in China is huge. The Pie News, citing a Chinese state media announcement, reported in September of last year that there were approximately 400,000 foreign citizens working in China as English language teachers, two-thirds of whom were working illegally. Recruitment problems, exacerbated by quotas and more stringent official requirements for qualifications, along with a very restricted desired teacher profile (white, native-speakers from a few countries like the US and the UK), have led more providers to look towards online solutions. Eric Yang, founder of the Shanghai-based iTutorGroup, which operates under a number of different brands and claims to be the ‘largest English-language learning institution in the world’, said that he had been expecting online tutoring to surpass F2F classes within a few years. With coronavirus, he now thinks it will come ‘much earlier’.

Typically, the work does not require much, if anything, in the way of training (besides familiarity with the platform), although a 40-hour TEFL course is usually preferred. Teachers deliver pre-packaged lessons. According to the USA Today report, Chinese students pay between $49 and $80 dollars an hour for the classes.

It’s a highly profitable business and the biggest cost to the platform providers is the rates they pay the tutors. If you google “Teaching TEFL jobs online”, you’ll quickly find claims that teachers can earn $40 / hour and up. Such claims are invariably found on the sites of recruitment agencies, who are competing for attention. However, although it’s possible that a small number of people might make this kind of money, the reality is that most will get nowhere near it. Scroll down the pages a little and you’ll discover that a more generally quoted and accepted figure is between $14 and $20 / hour. These tutors are, of course, freelancers, so the wages are before tax, and there is no health coverage or pension plan.

Reed job advertVIPKid, for example, considered to be one of the better companies, offers payment in the $14 – $22 / hour range. Others offer considerably less, especially if you are not a white, graduate US citizen. Current rates advertised on OETJobs include work for Ziktalk ($10 – 15 / hour), NiceTalk ($10 – 11 / hour), 247MyTutor ($5 – 8 / hour) and Weblio ($5 – 6 / hour). The number of hours that you get is rarely fixed and tutors need to build up a client base by getting good reviews. They will often need to upload short introductory videos, selling their skills. They are in direct competition with other tutors.

They also need to make themselves available when demand for their services is highest. Peak hours for VIPKid, for example, are between 2 and 8 in the morning, depending on where you live in the US. Weekends, too, are popular. With VIPKid, classes are scheduled in advance, but this is not always the case with other companies, where you log on to show that you are available and hope someone wants you. This is the case with, for example, Cambly (which pays $10.20 / hour … or rather $0.17 / minute) and NiceTalk. According to one review, Cambly has a ‘priority hours system [which] allows teachers who book their teaching slots in advance to feature higher on the teacher list than those who have just logged in, meaning that they will receive more calls’. Teachers have to commit to a set schedule and any changes are heavily penalised. The review states that ‘new tutors on the platform should expect to receive calls for about 50% of the time they’re logged on’.


Taking the gig economy to its logical conclusion, there are other companies where tutors can fix their own rates. SkimaTalk, for example, offers a deal where tutors first teach three unpaid lessons (‘to understand how the system works and build up their initial reputation on the platform’), then the system sets $16 / hour as a default rate, but tutors can change this to anything they wish. With another, Palfish, where tutors set their own rate, the typical rate is $10 – 18 / hour, and the company takes a 20% commission. With Preply, here is the deal on offer:

Your earnings depend on the hourly rate you set in your profile and how often you can provide lessons. Preply takes a 100% commission fee of your first lesson payment with every new student. For all subsequent lessons, the commission varies from 33 to 18% and depends on the number of completed lesson hours with students. The more tutoring you do through Preply, the less commission you pay.

Not one to miss a trick, Ziktalk (‘currently focusing on language learning and building global audience’) encourages teachers ‘to upload educational videos in order to attract more students’. Or, to put it another way, teachers provide free content in order to have more chance of earning $10 – 15 / hour. Ah, the joys of digital labour!

And, then, coronavirus came along. With schools shutting down, first in China and then elsewhere, tens of millions of students are migrating online. In Hong Kong, for example, the South China Morning Post reports that schools will remain closed until April 20, at the earliest, but university entrance exams will be going ahead as planned in late March. CNBC reported yesterday that classes are being cancelled across the US, and the same is happening, or is likely to happen, in many other countries.

Shares in the big online providers soared in February, with Forbes reporting that $3.2 billion had been added to the share value of China’s e-Learning leaders. Stock in New Oriental (owners of BlingABC, mentioned above) ‘rose 7.3% last month, adding $190 million to the wealth of its founder Yu Minhong [whose] current net worth is estimated at $3.4 billion’.

DingTalk, a communication and management app owned by Alibaba (and the most downloaded free app in China’s iOS App Store), has been adapted to offer online services for schools, reports Xinhua, the official state-run Chinese news agency. The scale of operations is enormous: more than 10,000 new cloud servers were deployed within just two hours.

Current impacts are likely to be dwarfed by what happens in the future. According to Terry Weng, a Shenzhen-based analyst, ‘The gradual exit of smaller education firms means there are more opportunities for TAL and New Oriental. […] Investors are more keen for their future performance.’ Zhu Hong, CTO of DingTalk, observes ‘the epidemic is like a catalyst for many enterprises and schools to adopt digital technology platforms and products’.

For edtech investors, things look rosy. Smaller, F2F providers are in danger of going under. In an attempt to mop up this market and gain overall market share, many elearning providers are offering weighty discounts and free services. Profits can come later.

For the hundreds of thousands of illegal or semi-legal English language teachers in China, things look doubly bleak. Their situation is likely to become even more precarious, with the online gig economy their obvious fall-back path. But English language teachers everywhere are likely to be affected one way or another, as will the whole world of TEFL.

Now seems like a pretty good time to find out more about precarity (see the Teachers as Workers website) and native-speakerism (see TEFL Equity Advocates).

At the start of the last decade, ELT publishers were worried, Macmillan among them. The financial crash of 2008 led to serious difficulties, not least in their key Spanish market. In 2011, Macmillan’s parent company was fined ₤11.3 million for corruption. Under new ownership, restructuring was a constant. At the same time, Macmillan ELT was getting ready to move from its Oxford headquarters to new premises in London, a move which would inevitably lead to the loss of a sizable proportion of its staff. On top of that, Macmillan, like the other ELT publishers, was aware that changes in the digital landscape (the first 3G iPhone had appeared in June 2008 and wifi access was spreading rapidly around the world) meant that they needed to shift away from the old print-based model. With her finger on the pulse, Caroline Moore, wrote an article in October 2010 entitled ‘No Future? The English Language Teaching Coursebook in the Digital Age’ . The publication (at the start of the decade) and runaway success of the online ‘Touchstone’ course, from arch-rivals, Cambridge University Press, meant that Macmillan needed to change fast if they were to avoid being left behind.

Macmillan already had a platform, Campus, but it was generally recognised as being clunky and outdated, and something new was needed. In the summer of 2012, Macmillan brought in two new executives – people who could talk the ‘creative-disruption’ talk and who believed in the power of big data to shake up English language teaching and publishing. At the time, the idea of big data was beginning to reach public consciousness and ‘Big Data: A Revolution that Will Transform how We Live, Work, and Think’ by Viktor Mayer-Schönberger and Kenneth Cukier, was a major bestseller in 2013 and 2014. ‘Big data’ was the ‘hottest trend’ in technology and peaked in Google Trends in October 2014. See the graph below.


Not long after taking up their positions, the two executives began negotiations with Knewton, an American adaptive learning company. Knewton’s technology promised to gather colossal amounts of data on students using Knewton-enabled platforms. Its founder, Jose Ferreira, bragged that Knewton had ‘more data about our students than any company has about anybody else about anything […] We literally know everything about what you know and how you learn best, everything’. This data would, it was claimed, enable publishers to multiply, by orders of magnitude, the efficacy of learning materials, allowing publishers, like Macmillan, to provide a truly personalized and optimal offering to learners using their platform.

The contract between Macmillan and Knewton was agreed in May 2013 ‘to build next-generation English Language Learning and Teaching materials’. Perhaps fearful of being left behind in what was seen to be a winner-takes-all market (Pearson already had a financial stake in Knewton), Cambridge University Press duly followed suit, signing a contract with Knewton in September of the same year, in order ‘to create personalized learning experiences in [their] industry-leading ELT digital products’. Things moved fast because, by the start of 2014 when Macmillan’s new catalogue appeared, customers were told to ‘watch out for the ‘Big Tree’’, Macmillans’ new platform, which would be powered by Knewton. ‘The power that will come from this world of adaptive learning takes my breath away’, wrote the international marketing director.

Not a lot happened next, at least outwardly. In the following year, 2015, the Macmillan catalogue again told customers to ‘look out for the Big Tree’ which would offer ‘flexible blended learning models’ which could ‘give teachers much more freedom to choose what they want to do in the class and what they want the students to do online outside of the classroom’.


But behind the scenes, everything was going wrong. It had become clear that a linear model of language learning, which was a necessary prerequisite of the Knewton system, simply did not lend itself to anything which would be vaguely marketable in established markets. Skills development, not least the development of so-called 21st century skills, which Macmillan was pushing at the time, would not be facilitated by collecting huge amounts of data and algorithms offering personalized pathways. Even if it could, teachers weren’t ready for it, and the projections for platform adoptions were beginning to seem very over-optimistic. Costs were spiralling. Pushed to meet unrealistic deadlines for a product that was totally ill-conceived in the first place, in-house staff were suffering, and this was made worse by what many staffers thought was a toxic work environment. By the end of 2014 (so, before the copy for the 2015 catalogue had been written), the two executives had gone.

For some time previously, skeptics had been joking that Macmillan had been barking up the wrong tree, and by the time that the 2016 catalogue came out, the ‘Big Tree’ had disappeared without trace. The problem was that so much time and money had been thrown at this particular tree that not enough had been left to develop new course materials (for adults). The whole thing had been a huge cock-up of an extraordinary kind.

Cambridge, too, lost interest in their Knewton connection, but were fortunate (or wise) not to have invested so much energy in it. Language learning was only ever a small part of Knewton’s portfolio, and the company had raised over $180 million in venture capital. Its founder, Jose Ferreira, had been a master of marketing hype, but the business model was not delivering any better than the educational side of things. Pearson pulled out. In December 2016, Ferreira stepped down and was replaced as CEO. The company shifted to ‘selling digital courseware directly to higher-ed institutions and students’ but this could not stop the decline. In September of 2019, Knewton was sold for something under $17 million dollars, with investors taking a hit of over $160 million. My heart bleeds.

It was clear, from very early on (see, for example, my posts from 2014 here and here) that Knewton’s product was little more than what Michael Feldstein called ‘snake oil’. Why and how could so many people fall for it for so long? Why and how will so many people fall for it again in the coming decade, although this time it won’t be ‘big data’ that does the seduction, but AI (which kind of boils down to the same thing)? The former Macmillan executives are still at the game, albeit in new companies and talking a slightly modified talk, and Jose Ferreira (whose new venture has already raised $3.7 million) is promising to revolutionize education with a new start-up which ‘will harness the power of technology to improve both access and quality of education’ (thanks to Audrey Watters for the tip). Investors may be desperate to find places to spread their portfolio, but why do the rest of us lap up the hype? It’s a question to which I will return.





Back in the middle of the last century, the first interactive machines for language teaching appeared. Previously, there had been phonograph discs and wire recorders (Ornstein, 1968: 401), but these had never really taken off. This time, things were different. Buoyed by a belief in the power of technology, along with the need (following the Soviet Union’s successful Sputnik programme) to demonstrate the pre-eminence of the United States’ technological expertise, the interactive teaching machines that were used in programmed instruction promised to revolutionize language learning (Valdman, 1968: 1). From coast to coast, ‘tremors of excitement ran through professional journals and conferences and department meetings’ (Kennedy, 1967: 871). The new technology was driven by hard science, supported and promoted by the one of the most well-known and respected psychologists and public intellectuals of the day (Skinner, 1961).

In classrooms, the machines acted as powerfully effective triggers in generating situational interest (Hidi & Renninger, 2006). Even more exciting than the mechanical teaching machines were the computers that were appearing on the scene. ‘Lick’ Licklider, a pioneer in interactive computing at the Advanced Research Projects Agency in Arlington, Virginia, developed an automated drill routine for learning German by hooking up a computer, two typewriters, an oscilloscope and a light pen (Noble, 1991: 124). Students loved it, and some would ‘go on and on, learning German words until they were forced by scheduling to cease their efforts’. Researchers called the seductive nature of the technology ‘stimulus trapping’, and Licklider hoped that ‘before [the student] gets out from under the control of the computer’s incentives, [they] will learn enough German words’ (Noble, 1991: 125).

With many of the developed economies of the world facing a critical shortage of teachers, ‘an urgent pedagogical emergency’ (Hof, 2018), the new approach was considered to be extremely efficient and could equalise opportunity in schools across the country. It was ‘here to stay: [it] appears destined to make progress that could well go beyond the fondest dreams of its originators […] an entire industry is just coming into being and significant sales and profits should not be too long in coming’ (Kozlowski, 1961: 47).

Unfortunately, however, researchers and entrepreneurs had massively underestimated the significance of novelty effects. The triggered situational interest of the machines did not lead to intrinsic individual motivation. Students quickly tired of, and eventually came to dislike, programmed instruction and the machines that delivered it (McDonald et al.: 2005: 89). What’s more, the machines were expensive and ‘research studies conducted on its effectiveness showed that the differences in achievement did not constantly or substantially favour programmed instruction over conventional instruction (Saettler, 2004: 303). Newer technologies, with better ‘stimulus trapping’, were appearing. Programmed instruction lost its backing and disappeared, leaving as traces only its interest in clearly defined learning objectives, the measurement of learning outcomes and a concern with the efficiency of learning approaches.

Hot on the heels of programmed instruction came the language laboratory. Futuristic in appearance, not entirely unlike the deck of the starship USS Enterprise which launched at around the same time, language labs captured the public imagination and promised to explore the final frontiers of language learning. As with the earlier teaching machines, students were initially enthusiastic. Even today, when language labs are introduced into contexts where they may be perceived as new technology, they can lead to high levels of initial motivation (e.g. Ramganesh & Janaki, 2017).

Given the huge investments into these labs, it’s unfortunate that initial interest waned fast. By 1969, many of these rooms had turned into ‘“electronic graveyards,” sitting empty and unused, or perhaps somewhat glorified study halls to which students grudgingly repair to don headphones, turn down the volume, and prepare the next period’s history or English lesson, unmolested by any member of the foreign language faculty’ (Turner, 1969: 1, quoted in Roby, 2003: 527). ‘Many second language students shudder[ed] at the thought of entering into the bowels of the “language laboratory” to practice and perfect the acoustical aerobics of proper pronunciation skills. Visions of sterile white-walled, windowless rooms, filled with endless bolted-down rows of claustrophobic metal carrels, and overseen by a humorless, lab director, evoke[d] fear in the hearts of even the most stout-hearted prospective second-language learners (Wiley, 1990: 44).

By the turn of this century, language labs had mostly gone, consigned to oblivion by the appearance of yet newer technology: the internet, laptops and smartphones. Education had been on the brink of being transformed through new learning technologies for decades (Laurillard, 2008: 1), but this time it really was different. It wasn’t just one technology that had appeared, but a whole slew of them: ‘artificial intelligence, learning analytics, predictive analytics, adaptive learning software, school management software, learning management systems (LMS), school clouds. No school was without these and other technologies branded as ‘superintelligent’ by the late 2020s’ (Macgilchrist et al., 2019). The hardware, especially phones, was ubiquitous and, therefore, free. Unlike teaching machines and language laboratories, students were used to using the technology and expected to use their devices in their studies.

A barrage of publicity, mostly paid for by the industry, surrounded the new technologies. These would ‘meet the demands of Generation Z’, the new generation of students, now cast as consumers, who ‘were accustomed to personalizing everything’.  AR, VR, interactive whiteboards, digital projectors and so on made it easier to ‘create engaging, interactive experiences’. The ‘New Age’ technologies made learning fun and easy,  ‘bringing enthusiasm among the students, improving student engagement, enriching the teaching process, and bringing liveliness in the classroom’. On top of that, they allowed huge amounts of data to be captured and sold, whilst tracking progress and attendance. In any case, resistance to digital technology, said more than one language teaching expert, was pointless (Styring, 2015).slide

At the same time, technology companies increasingly took on ‘central roles as advisors to national governments and local districts on educational futures’ and public educational institutions came to be ‘regarded by many as dispensable or even harmful’ (Macgilchrist et al., 2019).

But, as it turned out, the students of Generation Z were not as uniformly enthusiastic about the new technology as had been assumed, and resistance to digital, personalized delivery in education was not long in coming. In November 2018, high school students at Brooklyn’s Secondary School for Journalism staged a walkout in protest at their school’s use of Summit Learning, a web-based platform promoting personalized learning developed by Facebook. They complained that the platform resulted in coursework requiring students to spend much of their day in front of a computer screen, that made it easy to cheat by looking up answers online, and that some of their teachers didn’t have the proper training for the curriculum (Leskin, 2018). Besides, their school was in a deplorable state of disrepair, especially the toilets. There were similar protests in Kansas, where students staged sit-ins, supported by their parents, one of whom complained that ‘we’re allowing the computers to teach and the kids all looked like zombies’ before pulling his son out of the school (Bowles, 2019). In Pennsylvania and Connecticut, some schools stopped using Summit Learning altogether, following protests.

But the resistance did not last. Protesters were accused of being nostalgic conservatives and educationalists kept largely quiet, fearful of losing their funding from the Chan Zuckerberg Initiative (Facebook) and other philanthro-capitalists. The provision of training in grit, growth mindset, positive psychology and mindfulness (also promoted by the technology companies) was ramped up, and eventually the disaffected students became more quiescent. Before long, the data-intensive, personalized approach, relying on the tools, services and data storage of particular platforms had become ‘baked in’ to educational systems around the world (Moore, 2018: 211). There was no going back (except for small numbers of ultra-privileged students in a few private institutions).

By the middle of the century (2155), most students, of all ages, studied with interactive screens in the comfort of their homes. Algorithmically-driven content, with personalized, adaptive tests had become the norm, but the technology occasionally went wrong, leading to some frustration. One day, two young children discovered a book in their attic. Made of paper with yellow, crinkly pages, where ‘the words stood still instead of moving the way they were supposed to’. The book recounted the experience of schools in the distant past, where ‘all the kids from the neighbourhood came’, sitting in the same room with a human teacher, studying the same things ‘so they could help one another on the homework and talk about it’. Margie, the younger of the children at 11 years old, was engrossed in the book when she received a nudge from her personalized learning platform to return to her studies. But Margie was reluctant to go back to her fractions. She ‘was thinking about how the kids must have loved it in the old days. She was thinking about the fun they had’ (Asimov, 1951).


Asimov, I. 1951. The Fun They Had. Accessed September 20, 2019.

Bowles, N. 2019. ‘Silicon Valley Came to Kansas Schools. That Started a Rebellion’ The New York Times, April 21. Accessed September 20, 2019.

Hidi, S. & Renninger, K.A. 2006. ‘The Four-Phase Model of Interest Development’ Educational Psychologist, 41 (2), 111 – 127

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47 (4): 445-465

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 (6): 47 – 54

Laurillard, D. 2008. Digital Technologies and their Role in Achieving our Ambitions for Education. London: Institute for Education.

Leskin, P. 2018. ‘Students in Brooklyn protest their school’s use of a Zuckerberg-backed online curriculum that Facebook engineers helped build’ Business Insider, 12.11.18 Accessed 20 September 2019.

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 (2): 84 – 98

Macgilchrist, F., Allert, H. & Bruch, A. 2019. ‚Students and society in the 2020s. Three future ‘histories’ of education and technology’. Learning, Media and Technology, )

Moore, M. 2018. Democracy Hacked. London: Oneworld

Noble, D. D. 1991. The Classroom Arsenal. London: The Falmer Press

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 (7), 401 – 410

Ramganesh, E. & Janaki, S. 2017. ‘Attitude of College Teachers towards the Utilization of Language Laboratories for Learning English’ Asian Journal of Social Science Studies; Vol. 2 (1): 103 – 109

Roby, W.B. 2003. ‘Technology in the service of foreign language teaching: The case of the language laboratory’ In D. Jonassen (ed.), Handbook of Research on Educational Communications and Technology, 2nd ed.: 523 – 541. Mahwah, NJ.: Lawrence Erlbaum Associates

Saettler, P. 2004. The Evolution of American Educational Technology. Greenwich, Conn.: Information Age Publishing

Skinner, B. F. 1961. ‘Teaching Machines’ Scientific American, 205(5), 90-107

Styring, J. 2015. Engaging Generation Z. Cambridge English webinar 2015

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14.

Wiley, P. D. 1990. ‘Language labs for 1990: User-friendly, expandable and affordable’. Media & Methods, 27(1), 44–47)


Jenny Holzer, Protect me from what I want

At a recent ELT conference, a plenary presentation entitled ‘Getting it right with edtech’ (sponsored by a vendor of – increasingly digital – ELT products) began with the speaker suggesting that technology was basically neutral, that what you do with educational technology matters far more than the nature of the technology itself. The idea that technology is a ‘neutral tool’ has a long pedigree and often accompanies exhortations to embrace edtech in one form or another (see for example Fox, 2001). It is an idea that is supported by no less a luminary than Chomsky, who, in a 2012 video entitled ‘The Purpose of Education’ (Chomsky, 2012), said that:

As far as […] technology […] and education is concerned, technology is basically neutral. It’s kind of like a hammer. I mean, […] the hammer doesn’t care whether you use it to build a house or whether a torturer uses it to crush somebody’s skull; a hammer can do either. The same with the modern technology; say, the Internet, and so on.

Womans hammerAlthough hammers are not usually classic examples of educational technology, they are worthy of a short discussion. Hammers come in all shapes and sizes and when you choose one, you need to consider its head weight (usually between 16 and 20 ounces), the length of the handle, the shape of the grip, etc. Appropriate specifications for particular hammering tasks have been calculated in great detail. The data on which these specifications is based on an analysis of the hand size and upper body strength of the typical user. The typical user is a man, and the typical hammer has been designed for a man. The average male hand length is 177.9 mm, that of the average woman is 10 mm shorter (Wang & Cai, 2017). Women typically have about half the upper body strength of men (Miller et al., 1993). It’s possible, but not easy to find hammers designed for women (they are referred to as ‘Ladies hammers’ on Amazon). They have a much lighter head weight, a shorter handle length, and many come in pink or floral designs. Hammers, in other words, are far from neutral: they are highly gendered.

Moving closer to educational purposes and ways in which we might ‘get it right with edtech’, it is useful to look at the smart phone. The average size of these devices has risen in recent years, and is now 5.5 inches, with the market for 6 inch screens growing fast. Why is this an issue? Well, as Caroline Criado Perez (2019: 159) notes, ‘while we’re all admittedly impressed by the size of your screen, it’s a slightly different matter when it comes to fitting into half the population’s hands. The average man can fairly comfortably use his device one-handed – but the average woman’s hand is not much bigger than the handset itself’. This is despite the fact the fact that women are more likely to own an iPhone than men  .

It is not, of course, just technological artefacts that are gendered. Voice-recognition software is also very biased. One researcher (Tatman, 2017) has found that Google’s speech recognition tool is 13% more accurate for men than it is for women. There are also significant biases for race and social class. The reason lies in the dataset that the tool is trained on: the algorithms may be gender- and socio-culturally-neutral, but the dataset is not. It would not be difficult to redress this bias by training the tool on a different dataset.

The same bias can be found in automatic translation software. Because corpora such as the BNC or COCA have twice as many male pronouns as female ones (as a result of the kinds of text that are selected for the corpora), translation software reflects the bias. With Google Translate, a sentence in a language with a gender-neutral pronoun, such as ‘S/he is a doctor’ is rendered into English as ‘He is a doctor’. Meanwhile, ‘S/he is a nurse’ is translated as ‘She is a nurse’ (Criado Perez, 2019: 166).

Datasets, then, are often very far from neutral. Algorithms are not necessarily any more neutral than the datasets, and Cathy O’Neil’s best-seller ‘Weapons of Math Destruction’ catalogues the many, many ways in which algorithms, posing as neutral mathematical tools, can increase racial, social and gender inequalities.

It would not be hard to provide many more examples, but the selection above is probably enough. Technology, as Langdon Winner (Winner, 1980) observed almost forty years ago, is ‘deeply interwoven in the conditions of modern politics’. Technology cannot be neutral: it has politics.

So far, I have focused primarily on the non-neutrality of technology in terms of gender (and, in passing, race and class). Before returning to broader societal issues, I would like to make a relatively brief mention of another kind of non-neutrality: the pedagogic. Language learning materials necessarily contain content of some kind: texts, topics, the choice of values or role models, language examples, and so on. These cannot be value-free. In the early days of educational computer software, one researcher (Biraimah, 1993) found that it was ‘at least, if not more, biased than the printed page it may one day replace’. My own impression is that this remains true today.

Equally interesting to my mind is the fact that all educational technologies, ranging from the writing slate to the blackboard (see Buzbee, 2014), from the overhead projector to the interactive whiteboard, always privilege a particular kind of teaching (and learning). ‘Technologies are inherently biased because they are built to accomplish certain very specific goals which means that some technologies are good for some tasks while not so good for other tasks’ (Zhao et al., 2004: 25). Digital flashcards, for example, inevitably encourage a focus on rote learning. Contemporary LMSs have impressive multi-functionality (i.e. they often could be used in a very wide variety of ways), but, in practice, most teachers use them in very conservative ways (Laanpere et al., 2004). This may be a result of teacher and institutional preferences, but it is almost certainly due, at least in part, to the way that LMSs are designed. They are usually ‘based on traditional approaches to instruction dating from the nineteenth century: presentation and assessment [and] this can be seen in the selection of features which are most accessible in the interface, and easiest to use’ (Lane, 2009).

The argument that educational technology is neutral because it could be put to many different uses, good or bad, is problematic because the likelihood of one particular use is usually much greater than another. There is, however, another way of looking at technological neutrality, and that is to look at its origins. Elsewhere on this blog, in post after post, I have given examples of the ways in which educational technology has been developed, marketed and sold primarily for commercial purposes. Educational values, if indeed there are any, are often an afterthought. The research literature in this area is rich and growing: Stephen Ball, Larry Cuban, Neil Selwyn, Joel Spring, Audrey Watters, etc.

Rather than revisit old ground here, this is an opportunity to look at a slightly different origin of educational technology: the US military. The close connection of the early history of the internet and the Advanced Research Projects Agency (now DARPA) of the United States Department of Defense is fairly well-known. Much less well-known are the very close connections between the US military and educational technologies, which are catalogued in the recently reissued ‘The Classroom Arsenal’ by Douglas D. Noble.

Following the twin shocks of the Soviet Sputnik 1 (in 1957) and Yuri Gagarin (in 1961), the United States launched a massive programme of investment in the development of high-tech weaponry. This included ‘computer systems design, time-sharing, graphics displays, conversational programming languages, heuristic problem-solving, artificial intelligence, and cognitive science’ (Noble, 1991: 55), all of which are now crucial components in educational technology. But it also quickly became clear that more sophisticated weapons required much better trained operators, hence the US military’s huge (and continuing) interest in training. Early interest focused on teaching machines and programmed instruction (branches of the US military were by far the biggest purchasers of programmed instruction products). It was essential that training was effective and efficient, and this led to a wide interest in the mathematical modelling of learning and instruction.

What was then called computer-based education (CBE) was developed as a response to military needs. The first experiments in computer-based training took place at the Systems Research Laboratory of the Air Force’s RAND Corporation think tank (Noble, 1991: 73). Research and development in this area accelerated in the 1960s and 1970s and CBE (which has morphed into the platforms of today) ‘assumed particular forms because of the historical, contingent, military contexts for which and within which it was developed’ (Noble, 1991: 83). It is possible to imagine computer-based education having developed in very different directions. Between the 1960s and 1980s, for example, the PLATO (Programmed Logic for Automatic Teaching Operations) project at the University of Illinois focused heavily on computer-mediated social interaction (forums, message boards, email, chat rooms and multi-player games). PLATO was also significantly funded by a variety of US military agencies, but proved to be of much less interest to the generals than the work taking place in other laboratories. As Noble observes, ‘some technologies get developed while others do not, and those that do are shaped by particular interests and by the historical and political circumstances surrounding their development (Noble, 1991: 4).

According to Noble, however, the influence of the military reached far beyond the development of particular technologies. Alongside the investment in technologies, the military were the prime movers in a campaign to promote computer literacy in schools.

Computer literacy was an ideological campaign rather than an educational initiative – a campaign designed, at bottom, to render people ‘comfortable’ with the ‘inevitable’ new technologies. Its basic intent was to win the reluctant acquiescence of an entire population in a brave new world sculpted in silicon.

The computer campaign also succeeded in getting people in front of that screen and used to having computers around; it made people ‘computer-friendly’, just as computers were being rendered ‘used-friendly’. It also managed to distract the population, suddenly propelled by the urgency of learning about computers, from learning about other things, such as how computers were being used to erode the quality of their working lives, or why they, supposedly the citizens of a democracy, had no say in technological decisions that were determining the shape of their own futures.

Third, it made possible the successful introduction of millions of computers into schools, factories and offices, even homes, with minimal resistance. The nation’s public schools have by now spent over two billion dollars on over a million and a half computers, and this trend still shows no signs of abating. At this time, schools continue to spend one-fifth as much on computers, software, training and staffing as they do on all books and other instructional materials combined. Yet the impact of this enormous expenditure is a stockpile of often idle machines, typically used for quite unimaginative educational applications. Furthermore, the accumulated results of three decades of research on the effectiveness of computer-based instruction remain ‘inconclusive and often contradictory’. (Noble, 1991: x – xi)

Rather than being neutral in any way, it seems more reasonable to argue, along with (I think) most contemporary researchers, that edtech is profoundly value-laden because it has the potential to (i) influence certain values in students; (ii) change educational values in [various] ways; and (iii) change national values (Omotoyinbo & Omotoyinbo, 2016: 173). Most importantly, the growth in the use of educational technology has been accompanied by a change in the way that education itself is viewed: ‘as a tool, a sophisticated supply system of human cognitive resources, in the service of a computerized, technology-driven economy’ (Noble, 1991: 1). These two trends are inextricably linked.


Biraimah, K. 1993. The non-neutrality of educational computer software. Computers and Education 20 / 4: 283 – 290

Buzbee, L. 2014. Blackboard: A Personal History of the Classroom. Minneapolis: Graywolf Press

Chomsky, N. 2012. The Purpose of Education (video). Learning Without Frontiers Conference.

Criado Perez, C. 2019. Invisible Women. London: Chatto & Windus

Fox, R. 2001. Technological neutrality and practice in higher education. In A. Herrmann and M. M. Kulski (Eds), Expanding Horizons in Teaching and Learning. Proceedings of the 10th Annual Teaching Learning Forum, 7-9 February 2001. Perth: Curtin University of Technology.

Laanpere, M., Poldoja, H. & Kikkas, K. 2004. The second thoughts about pedagogical neutrality of LMS. Proceedings of IEEE International Conference on Advanced Learning Technologies, 2004.

Lane, L. 2009. Insidious pedagogy: How course management systems impact teaching. First Monday, 14(10).

Miller, A.E., MacDougall, J.D., Tarnopolsky, M. A. & Sale, D.G. 1993. ‘Gender differences in strength and muscle fiber characteristics’ European Journal of Applied Physiology and Occupational Physiology. 66(3): 254-62

Noble, D. D. 1991. The Classroom Arsenal. Abingdon, Oxon.: Routledge

Omotoyinbo, D. W. & Omotoyinbo, F. R. 2016. Educational Technology and Value Neutrality. Societal Studies, 8 / 2: 163 – 179

O’Neil, C. 2016. Weapons of Math Destruction. London: Penguin

Sundström, P. Interpreting the Notion that Technology is Value Neutral. Medicine, Health Care and Philosophy 1, 1998: 42-44

Tatman, R. 2017. ‘Gender and Dialect Bias in YouTube’s Automatic Captions’ Proceedings of the First Workshop on Ethics in Natural Language Processing, pp. 53–59

Wang, C. & Cai, D. 2017. ‘Hand tool handle design based on hand measurements’ MATEC Web of Conferences 119, 01044 (2017)

Winner, L. 1980. Do Artifacts have Politics? Daedalus 109 / 1: 121 – 136

Zhao, Y, Alvarez-Torres, M. J., Smith, B. & Tan, H. S. 2004. The Non-neutrality of Technology: a Theoretical Analysis and Empirical Study of Computer Mediated Communication Technologies. Journal of Educational Computing Research 30 (1 &2): 23 – 55

When the startup, AltSchool, was founded in 2013 by Max Ventilla, the former head of personalization at Google, it quickly drew the attention of venture capitalists and within a few years had raised $174 million from the likes of the Zuckerberg Foundation, Peter Thiel, Laurene Powell Jobs and Pierre Omidyar. It garnered gushing articles in a fawning edtech press which enthused about ‘how successful students can be when they learn in small, personalized communities that champion project-based learning, guided by educators who get a say in the technology they use’. It promised ‘a personalized learning approach that would far surpass the standardized education most kids receive’.

altschoolVentilla was an impressive money-raiser who used, and appeared to believe, every cliché in the edTech sales manual. Dressed in regulation jeans, polo shirt and fleece, he claimed that schools in America were ‘stuck in an industrial-age model, [which] has been in steady decline for the last century’ . What he offered, instead, was a learner-centred, project-based curriculum providing real-world lessons. There was a focus on social-emotional learning activities and critical thinking was vital.

The key to the approach was technology. From the start, software developers, engineers and researchers worked alongside teachers everyday, ‘constantly tweaking the Personalized Learning Plan, which shows students their assignments for each day and helps teachers keep track of and assess student’s learning’. There were tablets for pre-schoolers, laptops for older kids and wall-mounted cameras to record the lessons. There were, of course, Khan Academy videos. Ventilla explained that “we start with a representation of each child”, and even though “the vast majority of the learning should happen non-digitally”, the child’s habits and preferences gets converted into data, “a digital representation of the important things that relate to that child’s learning, not just their academic learning but also their non-academic learning. Everything logistic that goes into setting up the experience for them, whether it’s who has permission to pick them up or their allergy information. You name it.” And just like Netflix matches us to TV shows, “If you have that accurate and actionable representation for each child, now you can start to personalize the whole experience for that child. You can create that kind of loop you described where because we can represent a child well, we can match them to the right experiences.”

AltSchool seemed to offer the possibility of doing something noble, of transforming education, ‘bringing it into the digital age’, and, at the same time, a healthy return on investors’ money. Expanding rapidly, nine AltSchool microschools were opened in New York and the Bay Area, and plans were afoot for further expansion in Chicago. But, by then, it was already clear that something was going wrong. Five of the schools were closed before they had really got started and the attrition rate in some classrooms had reached about 30%. Revenue in 2018 was only $7 million and there were few buyers for the AltSchool platform. Quoting once more from the edTech bible, Ventilla explained the situation: ‘Our whole strategy is to spend more than we make,’ he says. Since software is expensive to develop and cheap to distribute, the losses, he believes, will turn into steep profits once AltSchool refines its product and lands enough customers.

The problems were many and apparent. Some of the buildings were simply not appropriate for schools, with no playgrounds or gyms, malfunctioning toilets, among other issues. Parents were becoming unhappy and accused AltSchool of putting ‘its ambitions as a tech company above its responsibility to teach their children. […] We kind of came to the conclusion that, really, AltSchool as a school was kind of a front for what Max really wants to do, which is develop software that he’s selling,’ a parent of a former AltSchool student told Business Insider. ‘We had really mediocre educators using technology as a crutch,’ said one father who transferred his child to a different private school after two years at AltSchool. […] We learned that it’s almost impossible to really customize the learning experience for each kid.’ Some parents began to wonder whether AltSchool had enticed families into its program merely to extract data from their children, then toss them aside?

With the benefit of hindsight, it would seem that the accusations were hardly unfair. In June of this year, AltSchool announced that its four remaining schools would be operated by a new partner, Higher Ground Education (a well-funded startup founded in 2016 which promotes and ‘modernises’ Montessori education). Meanwhile, AltSchool has been rebranded as Altitude Learning, focusing its ‘resources on the development and expansion of its personalized learning platform’ for licensing to other schools across the country.

Quoting once more from the edTech sales manual, Ventilla has said that education should drive the tech, not the other way round. Not so many years earlier, before starting AltSchool, Ventilla also said that he had read two dozen books on education and emerged a fan of Sir Ken Robinson. He had no experience as a teacher or as an educational administrator. Instead, he had ‘extensive knowledge of networks, and he understood the kinds of insights that can be gleaned from big data’.

About two and a half years ago when I started writing this blog, there was a lot of hype around adaptive learning and the big data which might drive it. Two and a half years are a long time in technology. A look at Google Trends suggests that interest in adaptive learning has been pretty static for the last couple of years. It’s interesting to note that 3 of the 7 lettered points on this graph are Knewton-related media events (including the most recent, A, which is Knewton’s latest deal with Hachette) and 2 of them concern McGraw-Hill. It would be interesting to know whether these companies follow both parts of Simon Cowell’s dictum of ‘Create the hype, but don’t ever believe it’.


A look at the Hype Cycle (see here for Wikipedia’s entry on the topic and for criticism of the hype of Hype Cycles) of the IT research and advisory firm, Gartner, indicates that both big data and adaptive learning have now slid into the ‘trough of disillusionment’, which means that the market has started to mature, becoming more realistic about how useful the technologies can be for organizations.

A few years ago, the Gates Foundation, one of the leading cheerleaders and financial promoters of adaptive learning, launched its Adaptive Learning Market Acceleration Program (ALMAP) to ‘advance evidence-based understanding of how adaptive learning technologies could improve opportunities for low-income adults to learn and to complete postsecondary credentials’. It’s striking that the program’s aims referred to how such technologies could lead to learning gains, not whether they would. Now, though, with the publication of a report commissioned by the Gates Foundation to analyze the data coming out of the ALMAP Program, things are looking less rosy. The report is inconclusive. There is no firm evidence that adaptive learning systems are leading to better course grades or course completion. ‘The ultimate goal – better student outcomes at lower cost – remains elusive’, the report concludes. Rahim Rajan, a senior program office for Gates, is clear: ‘There is no magical silver bullet here.’

The same conclusion is being reached elsewhere. A report for the National Education Policy Center (in Boulder, Colorado) concludes: Personalized Instruction, in all its many forms, does not seem to be the transformational technology that is needed, however. After more than 30 years, Personalized Instruction is still producing incremental change. The outcomes of large-scale studies and meta-analyses, to the extent they tell us anything useful at all, show mixed results ranging from modest impacts to no impact. Additionally, one must remember that the modest impacts we see in these meta-analyses are coming from blended instruction, which raises the cost of education rather than reducing it (Enyedy, 2014: 15 -see reference at the foot of this post). In the same vein, a recent academic study by Meg Coffin Murray and Jorge Pérez (2015, ‘Informing and Performing: A Study Comparing Adaptive Learning to Traditional Learning’) found that ‘adaptive learning systems have negligible impact on learning outcomes’.

future-ready-learning-reimagining-the-role-of-technology-in-education-1-638In the latest educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Reimagining the Role of Technology in Education’, 2016) the only mentions of the word ‘adaptive’ are in the context of testing. And the latest OECD report on ‘Students, Computers and Learning: Making the Connection’ (2015), finds, more generally, that information and communication technologies, when they are used in the classroom, have, at best, a mixed impact on student performance.

There is, however, too much money at stake for the earlier hype to disappear completely. Sponsored cheerleading for adaptive systems continues to find its way into blogs and national magazines and newspapers. EdSurge, for example, recently published a report called ‘Decoding Adaptive’ (2016), sponsored by Pearson, that continues to wave the flag. Enthusiastic anecdotes take the place of evidence, but, for all that, it’s a useful read.

In the world of ELT, there are plenty of sales people who want new products which they can call ‘adaptive’ (and gamified, too, please). But it’s striking that three years after I started following the hype, such products are rather thin on the ground. Pearson was the first of the big names in ELT to do a deal with Knewton, and invested heavily in the company. Their relationship remains close. But, to the best of my knowledge, the only truly adaptive ELT product that Pearson offers is the PTE test.

Macmillan signed a contract with Knewton in May 2013 ‘to provide personalized grammar and vocabulary lessons, exam reviews, and supplementary materials for each student’. In December of that year, they talked up their new ‘big tree online learning platform’: ‘Look out for the Big Tree logo over the coming year for more information as to how we are using our partnership with Knewton to move forward in the Language Learning division and create content that is tailored to students’ needs and reactive to their progress.’ I’ve been looking out, but it’s all gone rather quiet on the adaptive / platform front.

In September 2013, it was the turn of Cambridge to sign a deal with Knewton ‘to create personalized learning experiences in its industry-leading ELT digital products for students worldwide’. This year saw the launch of a major new CUP series, ‘Empower’. It has an online workbook with personalized extra practice, but there’s nothing (yet) that anyone would call adaptive. More recently, Cambridge has launched the online version of the 2nd edition of Touchstone. Nothing adaptive there, either.

Earlier this year, Cambridge published The Cambridge Guide to Blended Learning for Language Teaching, edited by Mike McCarthy. It contains a chapter by M.O.Z. San Pedro and R. Baker on ‘Adaptive Learning’. It’s an enthusiastic account of the potential of adaptive learning, but it doesn’t contain a single reference to language learning or ELT!

So, what’s going on? Skepticism is becoming the order of the day. The early hype of people like Knewton’s Jose Ferreira is now understood for what it was. Companies like Macmillan got their fingers badly burnt when they barked up the wrong tree with their ‘Big Tree’ platform.

Noel Enyedy captures a more contemporary understanding when he writes: Personalized Instruction is based on the metaphor of personal desktop computers—the technology of the 80s and 90s. Today’s technology is not just personal but mobile, social, and networked. The flexibility and social nature of how technology infuses other aspects of our lives is not captured by the model of Personalized Instruction, which focuses on the isolated individual’s personal path to a fixed end-point. To truly harness the power of modern technology, we need a new vision for educational technology (Enyedy, 2014: 16).

Adaptive solutions aren’t going away, but there is now a much better understanding of what sorts of problems might have adaptive solutions. Testing is certainly one. As the educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Re-imagining the Role of Technology in Education’, 2016) puts it: Computer adaptive testing, which uses algorithms to adjust the difficulty of questions throughout an assessment on the basis of a student’s responses, has facilitated the ability of assessments to estimate accurately what students know and can do across the curriculum in a shorter testing session than would otherwise be necessary. In ELT, Pearson and EF have adaptive tests that have been well researched and designed.

Vocabulary apps which deploy adaptive technology continue to become more sophisticated, although empirical research is lacking. Automated writing tutors with adaptive corrective feedback are also developing fast, and I’ll be writing a post about these soon. Similarly, as speech recognition software improves, we can expect to see better and better automated adaptive pronunciation tutors. But going beyond such applications, there are bigger questions to ask, and answers to these will impact on whatever direction adaptive technologies take. Large platforms (LMSs), with or without adaptive software, are already beginning to look rather dated. Will they be replaced by integrated apps, or are apps themselves going to be replaced by bots (currently riding high in the Hype Cycle)? In language learning and teaching, the future of bots is likely to be shaped by developments in natural language processing (another topic about which I’ll be blogging soon). Nobody really has a clue where the next two and a half years will take us (if anywhere), but it’s becoming increasingly likely that adaptive learning will be only one very small part of it.


Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning. Boulder, CO: National Education Policy Center. Retrieved 17.07.16 from

Voxy is another language learning platform that likes to tout itself as ‘the future of language learning’. It has over 2.5 million users and claims to be the No. 1 education iTunes app in 23 countries. Pearson is a major investor and has a seat on the Voxy board. Unsurprisingly, it boasts ‘a new sophisticated and patented adaptive learning technology, […] a dynamic feedback loop which results in lessons and courses that calibrate to the learner. These improvements are fundamental to what makes Voxy unique as lessons become even more personalized.’


Voxy uses an integrated web / mobile / SMS platform to deliver its learning programme, which is based around authentic, up-to-date texts. I spent a morning as an advanced learner of English exploring what it had to offer. In what I did, everything was in English, but I imagine this is not the case for lower-level learners. Voxy was originally launched for speakers of Spanish and Portuguese.

As far as I could tell, there is very little that is (what I would call) adaptive. There is, no doubt, adaptive software at work in the vocabulary revision exercises, but it’s hard to see this operating. Before starting, users are asked about their level and what they want to ‘accomplish with English’. The six possible answers are ‘advance my career’, ‘enjoy English media’, ‘pass my English tests’, ‘travel abroad’. ‘day-to-day tasks’ and ‘social and lifestyle’. I was next asked about my interests, and the possible answers here were sports, celebrities and entertainment, business, technology, health and politics. Having answered these questions, my personalized course was ready.

I was offered a deal of $20 a month, with a free trial. This gave me access to the main course, a faily rudimentary grammar guide, a list of words I had ‘studied’, a proficiency test (reading, listening and TOEFL-style M/C grammar) and 13 hours with a ‘live’ tutor.

I decided that I couldn’t pretend to be a real learner and hook up with a tutor. Users can choose a tutor from a menu where the tutors are photographed (obligatory smile). They are young graduates and some, but not all, are described as having ‘Certification: Teaching English’, whatever this means. There are also tutor statements, one of which reads ‘I love that both teaching and studying foreign languages are abound with opportunities to experience international differences and similarities on a personal level’ (sic).

I concentrated on the main course which offered 18 lessons related to each of my declared interests. These were based on authentic texts from sources like Financial Times and New York Daily News. These were generally interesting and up-to-date. In some cases, the article was only 24 hours old.

The usual procedure was to (1) read the text, (2) tap on highlighted words, which would bring up dictionary definitions and a recording of the word, (3) listen to a recording of the text (read very slowly – far too slowly for anyone with an advanced level), (4) answer 2 -4 multiple choice questions, (5) be shown short gapped extracts from the text alongside 4 or 5 boxes, which, when you click on them gave a recording of different words, one of which was the correct answer to the highlighted gap in the text, and (6) do a word – definition matching task (the words from stage 5).

According to Wikipedia, Voxy is based on the principles of task-based language teaching. Jane Willis might beg to differ. What I saw was closer to those pre-1970s textbooks where texts were followed by glossaries. Voxy is technologically advanced, but methodologically, it is positively antediluvian.

A further problem concerns task design. Perhaps because the tasks that accompany the texts have to be produced very quickly (if the texts are really to be hot off the press), there were errors that no experienced materials writer would make, and no experienced ELT editor would fail to spot. The sorts of problems that I identifed included the following:

  • No clear rationale in the selection of vocabulary items; no apparent awareness of word difficulty or frequency.
  • No clear rationale in the selection of multiple choice items.
  • Many M/C vocabulary questions can be answered without understanding the word (simply by using the memory).
  • Vocabulary definition matching tasks often contain language in the definitions which is more complex than the target item.
  • The vocabulary definition matching tasks can mostly be done simply by eliminating the distractors (which have been plucked out of thin air, and have not previously appeared).
  • The definitions in these matching tasks often do not use the same grammar as the target item (e.g. an infinitive in the definition has to be matched to a participle target word).
  • Errors (e.g. ‘The brain reacts more strongly to rejection in real life that online rejection’ (sic) in one M/C item).

I could go on. The material has clearly not been written by experienced writers, it has not been properly edited or trialled. The texts may be interesting, but that’s the only positive that I can offer for the main part of the course that I looked at.

My greatest disappointment concerns the poor use that the technology has been put to. Contrary to Voxy’s claims, this is not a new way to learn a language, it’s not particularly fun and it’s hard to believe that it could be effective. Perhaps my, admittedly limited, experience with Voxy’s product was unrepresentative. Using authentic materials is a good idea, but this needs to be combined with decent social networking possibilities, a much more sophisticated use of adaptive technology, proper investment in item-writers and editors, and more. The future of language learning? Probably not.