Posts Tagged ‘Facebook’

Take the Cambridge Assessment English website, for example. When you connect to the site, you will see, at the bottom of the screen, a familiar (to people in Europe, at least) notification about the site’s use of cookies: the cookies consent.

You probably trust the site, so ignore the notification and quickly move on to find the resource you are looking for. But if you did click on hyperlinked ‘set cookies’, what would you find? The first link takes you to the ‘Cookie policy’ where you will be told that ‘We use cookies principally because we want to make our websites and mobile applications user-friendly, and we are interested in anonymous user behaviour. Generally our cookies don’t store sensitive or personally identifiable information such as your name and address or credit card details’. Scroll down, and you will find out more about the kind of cookies that are used. Besides the cookies that are necessary to the functioning of the site, you will see that there are also ‘third party cookies’. These are explained as follows: ‘Cambridge Assessment works with third parties who serve advertisements or present offers on our behalf and personalise the content that you see. Cookies may be used by those third parties to build a profile of your interests and show you relevant adverts on other sites. They do not store personal information directly but use a unique identifier in your browser or internet device. If you do not allow these cookies, you will experience less targeted content’.

This is not factually inaccurate: personal information is not stored directly. However, it is extremely easy for this information to be triangulated with other information to identify you personally. In addition to the data that you generate by having cookies on your device, Cambridge Assessment will also directly collect data about you. Depending on your interactions with Cambridge Assessment, this will include ‘your name, date of birth, gender, contact data including your home/work postal address, email address and phone number, transaction data including your credit card number when you make a payment to us, technical data including internet protocol (IP) address, login data, browser type and technology used to access this website’. They say they may share this data ‘with other people and/or businesses who provide services on our behalf or at our request’ and ‘with social media platforms, including but not limited to Facebook, Google, Google Analytics, LinkedIn, in pseudonymised or anonymised forms’.

In short, Cambridge Assessment may hold a huge amount of data about you and they can, basically, do what they like with it.

The cookie and privacy policies are fairly standard, as is the lack of transparency in the phrasing of them. Rather more transparency would include, for example, information about which particular ad trackers you are giving your consent to. This information can be found with a browser extension tool like Ghostery, and these trackers can be blocked. As you’ll see below, there are 5 ad trackers on this site. This is rather more than other sites that English language teachers are likely to go to. ETS-TOEFL has 4, Macmillan English and Pearson have 3, CUP ELT and the British Council Teaching English have 1, OUP ELT, IATEFL, BBC Learning English and Trinity College have none. I could only find TESOL, with 6 ad trackers, which has more. The blogs for all these organisations invariably have more trackers than their websites.

The use of numerous ad trackers is probably a reflection of the importance that Cambridge Assessment gives to social media marketing. There is a research paper, produced by Cambridge Assessment, which outlines the significance of big data and social media analytics. They have far more Facebook followers (and nearly 6 million likes) than any other ELT page, and they are proud of their #1 ranking in the education category of social media. The amount of data that can be collected here is enormous and it can be analysed in myriad ways using tools like Ubervu, Yomego and Hootsuite.

A little more transparency, however, would not go amiss. According to a report in Vox, Apple has announced that some time next year ‘iPhone users will start seeing a new question when they use many of the apps on their devices: Do they want the app to follow them around the internet, tracking their behavior?’ Obviously, Google and Facebook are none too pleased about this and will be fighting back. The implications for ad trackers and online advertising, more generally, are potentially huge. I wrote to Cambridge Assessment about this and was pleased to hear that ‘Cambridge Assessment are currently reviewing the process by which we obtain users consent for the use of cookies with the intention of moving to a much more transparent model in the future’. Let’s hope that other ELT organisations are doing the same.

You may be less bothered than I am by the thought of dozens of ad trackers following you around the net so that you can be served with more personalized ads. But the digital profile about you, to which these cookies contribute, may include information about your ethnicity, disabilities and sexual orientation. This profile is auctioned to advertisers when you visit some sites, allowing them to show you ‘personalized’ adverts based on the categories in your digital profile. Contrary to EU regulations, these categories may include whether you have cancer, a substance-abuse problem, your politics and religion (as reported in Fortune ).

But it’s not these cookies that are the most worrying aspect about our lack of digital privacy. It’s the sheer quantity of personal data that is stored about us. Every time we ask our students to use an app or a platform, we are asking them to divulge huge amounts of data. With ClassDojo, for example, this includes names, usernames, passwords, age, addresses, photographs, videos, documents, drawings, or audio files, IP addresses and browser details, clicks, referring URL’s, time spent on site, and page views (Manolev et al., 2019; see also Williamson, 2019).

It is now widely recognized that the ‘consent’ that is obtained through cookie policies and other end-user agreements is largely spurious. These consent agreements, as Sadowski (2019) observes, are non-negotiated, and non-negotiable; you either agree or you are denied access. What’s more, he adds, citing one study, it would take 76 days, working for 8 hours a day, to read the privacy policies a person typically encounters in a year. As a result, most of us choose not to choose when we accept online services (Cobo, 2019: 25). We have little, if any, control over how the data that is collected is used (Birch et al., 2020). More importantly, perhaps, when we ask our students to sign up to an educational app, we are asking / telling them to give away their personal data, not just ours. They are unlikely to fully understand the consequences of doing so.

The extent of this ignorance is also now widely recognized. In the UK, for example, two reports (cited by Sander, 2020) indicate that ‘only a third of people know that data they have not actively chosen to share has been collected’ (Doteveryone, 2018: 5), and that ‘less than half of British adult internet users are aware that apps collect their location and information on their personal preferences’ (Ofcom, 2019: 14).

The main problem with this has been expressed by programmer and activist, Richard Stallman, in an interview with New York magazine (Kulwin, 2018): Companies are collecting data about people. The data that is collected will be abused. That’s not an absolute certainty, but it’s a practical, extreme likelihood, which is enough to make collection a problem.

The abuse that Smallman is referring to can come in a variety of forms. At the relatively trivial end is the personalized advertising. Much more serious is the way that data aggregation companies will scrape data from a variety of sources, building up individual data profiles which can be used to make significant life-impacting decisions, such as final academic grades or whether one is offered a job, insurance or credit (Manolev et al., 2019). Cathy O’Neil’s (2016) best-selling ‘Weapons of Math Destruction’ spells out in detail how this abuse of data increases racial, gender and class inequalities. And after the revelations of Edward Snowden, we all know about the routine collection by states of huge amounts of data about, well, everyone. Whether it’s used for predictive policing or straightforward repression or something else, it is simply not possible for younger people, our students, to know what personal data they may regret divulging at a later date.

Digital educational providers may try to reassure us that they will keep data private, and not use it for advertising purposes, but the reassurances are hollow. These companies may change their terms and conditions further down the line, and examples exist of when this has happened (Moore, 2018: 210). But even if this does not happen, the data can never be secure. Illegal data breaches and cyber attacks are relentless, and education ranked worst at cybersecurity out of 17 major industries in one recent analysis (Foresman, 2018). One report suggests that one in five US schools and colleges have fallen victim to cyber-crime. Two weeks ago, I learnt (by chance, as I happened to be looking at my security settings on Chrome) that my passwords for Quizlet, Future Learn, Elsevier and Science Direct had been compromised by a data breach. To get a better understanding of the scale of data breaches, you might like to look at the UK’s IT Governance site, which lists detected and publicly disclosed data breaches and cyber attacks each month (36.6 million records breached in August 2020). If you scroll through the list, you’ll see how many of them are educational sites. You’ll also see a comment about how leaky organisations have been throughout lockdown … because they weren’t prepared for the sudden shift online.

Recent years have seen a growing consensus that ‘it is crucial for language teaching to […] encompass the digital literacies which are increasingly central to learners’ […] lives’ (Dudeney et al., 2013). Most of the focus has been on the skills that are needed to use digital media. There also appears to be growing interest in developing critical thinking skills in the context of digital media (e.g. Peachey, 2016) – identifying fake news and so on. To a much lesser extent, there has been some focus on ‘issues of digital identity, responsibility, safety and ethics when students use these technologies’ (Mavridi, 2020a: 172). Mavridi (2020b: 91) also briefly discusses the personal risks of digital footprints, but she does not have the space to explore more fully the notion of critical data literacy. This literacy involves an understanding of not just the personal risks of using ‘free’ educational apps and platforms, but of why they are ‘free’ in the first place. Sander (2020b) suggests that this literacy entails ‘an understanding of datafication, recognizing the risks and benefits of the growing prevalence of data collection, analytics, automation, and predictive systems, as well as being able to critically reflect upon these developments. This includes, but goes beyond the skills of, for example, changing one’s social media settings, and rather constitutes an altered view on the pervasive, structural, and systemic levels of changing big data systems in our datafied societies’.

In my next two posts, I will, first of all, explore in more detail the idea of critical data literacy, before suggesting a range of classroom resources.

(I posted about privacy in March 2014, when I looked at the connections between big data and personalized / adaptive learning. In another post, September 2014, I looked at the claims of the CEO of Knewton who bragged that his company had five orders of magnitude more data about you than Google has. … We literally have more data about our students than any company has about anybody else about anything, and it’s not even close. You might find both of these posts interesting.)


Birch, K., Chiappetta, M. & Artyushina, A. (2020). ‘The problem of innovation in technoscientific capitalism: data rentiership and the policy implications of turning personal digital data into a private asset’ Policy Studies, 41:5, 468-487, DOI: 10.1080/01442872.2020.1748264

Cobo, C. (2019). I Accept the Terms and Conditions.

Doteveryone. (2018). People, Power and Technology: The 2018 Digital Attitudes Report.

Dudeney, G., Hockly, N. & Pegrum, M. (2013). Digital Literacies. Harlow: Pearson Education

Foresman, B. (2018). Education ranked worst at cybersecurity out of 17 major industries. Edscoop, December 17, 2018.

Kulwin, K. (2018). F*ck Them. We Need a Law’: A Legendary Programmer Takes on Silicon Valley, New York Intelligencer, 2018,

Manolev, J., Sullivan, A. & Slee, R. (2019). ‘Vast amounts of data about our children are being harvested and stored via apps used by schools’ EduReseach Matters, February 18, 2019.

Mavridi, S. (2020a). Fostering Students’ Digital Responsibility, Ethics and Safety Skills (Dress). In Mavridi, S. & Saumell, V. (Eds.) Digital Innovations and Research in Language Learning. Faversham, Kent: IATEFL. pp. 170 – 196

Mavridi, S. (2020b). Digital literacies and the new digital divide. In Mavridi, S. & Xerri, D. (Eds.) English for 21st Century Skills. Newbury, Berks.: Express Publishing. pp. 90 – 98

Moore, M. (2018). Democracy Hacked. London: Oneworld

Ofcom. (2019). Adults: Media use and attitudes report [Report].

O’Neil, C. (2016). Weapons of Math Destruction. London: Allen Lane

Peachey, N. (2016). Thinking Critically through Digital Media.

Sadowski, J. (2019). ‘When data is capital: Datafication, accumulation, and extraction’ Big Data and Society 6 (1)

Sander, I. (2020a). What is critical big data literacy and how can it be implemented? Internet Policy Review, 9 (2). DOI: 10.14763/2020.2.1479

Sander, I. (2020b). Critical big data literacy tools—Engaging citizens and promoting empowered internet usage. Data & Policy, 2: e5 doi:10.1017/dap.2020.5

Williamson, B. (2019). ‘Killer Apps for the Classroom? Developing Critical Perspectives on ClassDojo and the ‘Ed-tech’ Industry’ Journal of Professional Learning, 2019 (Semester 2)

Definition of gritGrit book cover

from Quartz at Work magazine


Grit is on the up. You may have come across articles like ‘How to Be Gritty in the Time of COVID-19’ or ‘Rediscovering the meaning of grit during COVID-19’ . If you still want more, there are new videos from Angela Duckworth herself where we can learn how to find our grit in the face of the pandemic.

Schools and educational authorities love grit. Its simple, upbeat message (‘Yes, you can’) has won over hearts and minds. Back in 2014, the British minister for education announced a £5million plan to encourage teaching ‘character and resilience’ in schools – specifically looking at making Britain’s pupils ‘grittier’. The spending on grit hasn’t stopped since.

The publishers of Duckworth’s book paid a seven-figure sum to acquire the US rights, and sales have proved the wisdom of the investment. Her TED talk has had over 6.5 million views on YouTube, although it’s worth looking at the comments to see why many people have been watching it.

Youtube comments

The world of English language teaching, always on the lookout for a new bandwagon to jump onto, is starting to catch up with the wider world of education. Luke Plonsky, an eminent SLA scholar, specialist in meta-analyses and grit enthusiast, has a bibliography of grit studies related to L2 learning, that he deems worthy of consideration. Here’s a summary, by year, of those publications. More details will follow in the next section.

Plonsky biblio

We can expect interest in ‘grit’ to continue growing, and this may be accelerated by the publication this year of Engaging Language Learners in Contemporary Classrooms by Sarah Mercer and Zoltán Dörnyei. In this book, the authors argue that a ‘facilitative mindset’ is required for learner engagement. They enumerate five interrelated principles for developing a ‘facilitative mindset’: promote a sense of competence, foster a growth mindset, promote learners’ sense of ownership and control, develop proactive learners and, develop gritty learners. After a brief discussion of grit, they write: ‘Thankfully, grit can be learnt and developed’ (p.38).

Unfortunately, they don’t provide any evidence at all for this. Unfortunately, too, this oversight is easy to explain. Such evidence as there is does not lend unequivocal support to the claim. Two studies that should have been mentioned in this book are ‘Much ado about grit: A meta-analytic synthesis of the grit literature’ (Credé et al, 2017) and ‘What shall we do about grit? A critical review of what we know and what we don’t know’ (Credé, 2018). The authors found that ‘grit as it is currently measured does not appear to be particularly predictive of success and performance’ (Credé et al, 2017) and that there is no support for the claim that ‘grit is likely to be responsive to interventions’ (Credé, 2018). In the L2 learning context, Teimouri et al (2020) concluded that more research in SLA substantiating the role of grit in L2 contexts was needed before any grit interventions can be recommended.

It has to be said that such results are hardly surprising. If, as Duckworth claims, ‘grit’ is a combination of passion and persistence, how on earth can the passion part of it be susceptible to educational interventions? ‘If there is one thing that cannot be learned, it’s passion. A person can have it and develop it, but learn it? Sadly, not’. (De Bruyckere et al., 2020: 83)

Even Duckworth herself is not convinced. In an interview on a Freakonomics podcast, she states that she hopes it’s something people can learn, but also admits not having enough proof to confirm that they can (Kirschner & Neelen, 2016)!

Is ‘grit’ a thing?

Marc Jones, in a 2016 blog post entitled ‘Gritty Politti: Grit, Growth Mindset and Neoliberal Language Teaching’, writes that ‘Grit is so difficult to define that it takes Duckworth (2016) the best part of a book to describe it adequately’. Yes, ‘grit’ is passion and persistence (or perseverance), but it’s also conscientiousness, practice and hope. Credé et al (2017) found that ‘grit is very strongly correlated with conscientiousness’ (which has already been widely studied in the educational literature). Why lump this together with passion? Another study (Muenks et al., 2017) found that ‘Students’ grit overlapped empirically with their concurrently reported self-control, self-regulation, and engagement. Students’ perseverance of effort (but not their consistency of interests) predicted their later grades, although other self-regulation and engagement variables were stronger predictors of students’ grades than was grit’. Credé (2018) concluded that ‘there appears to be no reason to accept the combination of perseverance and passion for long-term goals into a single grit construct’.

The L2 learning research listed in Plonsky’s bibliography does not offer much in support of ‘grit’, either. Many of the studies identified problems with ‘grit’ as a construct, but, even when accepting it, did not find it to be of much value. Wei et al. (2019) found a positive but weak correlation between grit and English language course grades. Yamashita (2018) found no relationship between learners’ grit and their course grades. Taşpinar & Külekçi (2018) found that students’ grit levels and academic achievement scores did not relate to each other (but still found that ‘grit, perseverance, and tenacity are the essential elements that impact learners’ ability to succeed to be prepared for the demands of today’s world’!).

There are, then, grounds for suspecting that Duckworth and her supporters have fallen foul of the ‘jangle fallacy’ – the erroneous assumption that two identical or almost identical things are different because they are labelled differently. This would also help to explain the lack of empirical support for the notion of ‘grit’. Not only are the numerous variables insufficiently differentiated, but the measures of ‘grit’ (such as Duckworth’s Grit-S measure) do not adequately target some of these variables (e.g. long-term goals, where ‘long-term’ is not defined) (Muenks et al., 2017). In addition, these measures are self-reporting and not, therefore, terribly reliable.

Referring to more general approaches to character education, one report (Gutman & Schoon, 2012) has argued that there is little empirical evidence of a causal relationship between self-concept and educational outcomes. Taking this one step further, Kathryn Ecclestone (Ecclestone, 2012) suggests that at best, the concepts and evidence that serve as the basis of these interventions are inconclusive and fragmented; ‘at worst, [they are] prey to ‘advocacy science’ or, in [their] worst manifestations, to simple entrepreneurship that competes for publicly funded interventions’ (cited in Cabanas & Illouz, 2019: 80).

Criticisms of ‘grit’

Given the lack of supporting research, any practical application of ‘grit’ ideas is premature. Duckworth herself, in an article entitled ‘Don’t Believe the Hype About Grit, Pleads the Scientist Behind the Concept’ (Dahl, 2016), cautions against hasty applications:

[By placing too much emphasis on grit, the danger is] that grit becomes a scapegoat — another reason to blame kids for not doing well, or to say that we don’t have a responsibility as a society to help them. [She worries that some interpretations of her work might make a student’s failure seem like his problem, as if he just didn’t work hard enough.] I think to separate and pit against each other character strengths on the one hand — like grit — and situational opportunities on the other is a false dichotomy […] Kids need to develop character, and they need our support in doing so.

Marc Jones, in the blog mentioned above, writes that ‘to me, grit is simply another tool for attacking the poor and the other’. You won’t win any prizes for guessing which kinds of students are most likely to be the targets of grit interventions. A clue: think of the ‘no-nonsense’ charters in the US and academies in the UK. This is what Kenneth Saltzman has to say:

‘Grit’ is a pedagogy of control that is predicated upon a promise made to poor children that if they learnt the tools of self-control and learnt to endure drudgery, then they can compete with rich children for scarce economic resources. (Saltzman, 2017: 38)

[It] is a behaviourist form of learned self-control targeting poor students of color and has been popularized post-crisis in the wake of educational privatization and defunding as the cure for poverty. [It] is designed to suggest that individual resilience and self-reliance can overcome social violence and unsupportive social contexts in the era of the shredded social state. (Saltzman, 2017: 15)

Grit is misrepresented by proponents as opening a world of individual choices rather than discussed as a mode of educational and social control in the austere world of work defined by fewer and fewer choices as secure public sector work is scaled back, unemployment continuing at high levels. (Saltzman, 2017: 49)

Whilst ‘grit’ is often presented as a way of dealing with structural inequalities in schools, critics see it as more of a problem than a solution: ‘It’s the kids who are most impacted by, rebel against, or criticize the embedded racism and classism of their institutions that are being told to have more grit, that school is hard for everyone’ (EquiTEA, 2018). A widely cited article by Nicholas Tampio (2016) points out that ‘Duckworth celebrates educational models such as Beast at West Point that weed out people who don’t obey orders’. He continues ‘that is a disastrous model for education in a democracy. US schools ought to protect dreamers, inventors, rebels and entrepreneurs – not crush them in the name of grit’.

If you’re interested in reading more critics of grit, the blog ‘Debunked!’ is an excellent source of links.

Measuring grit

Analyses of emotional behaviour have become central to economic analysis and, beginning in the 1990s, there have been constant efforts to create ‘formal instruments of classification of emotional behaviour and the elaboration of the notion of emotional competence’ (Illouz, 2007: 64). The measurement and manipulation of various aspects of ‘emotional intelligence’ have become crucial as ways ‘to control, predict, and boost performance’ (Illouz, 2007: 65). An article in the Journal of Benefit-Cost Analysis (Belfield et al., 2015) makes the economic importance of emotions very clear. Entitled ‘The Economic Value of Social and Emotional Learning’, it examines the economic value of these skills within a benefit-cost analysis (BCA) framework, and finds that the benefits of [social and emotional learning] interventions substantially outweigh the costs.

In recent years, the OECD has commissioned a number of reports on social and emotional learning and, as with everything connected with the OECD, is interested in measuringnon-cognitive skills such as perseverance (“grit”), conscientiousness, self-control, trust, attentiveness, self-esteem and self-efficacy, resilience to adversity, openness to experience, empathy, humility, tolerance of diverse opinions and the ability to engage productively in society’ (Kautz et al., 2014: 9). The measurement of personality factors will feature in the OECD’s PISA programme. Elsewhere, Ben Williamson reports that ‘US schools [are] now under pressure—following the introduction of the Every Student Succeeds Act in 2015—to provide measurable evidence of progress on the development of students’ non-academic learning’ (Williamson, 2017).

Grit, which ‘starts and ends with the lone individual as economic actor, worker, and consumer’ (Saltzman, 2017: 50), is a recent addition to the categories of emotional competence, and it should come as no surprise that educational authorities have so wholeheartedly embraced it. It is the claim that something (i.e. ‘grit’) can be taught and developed that leads directly to the desire to measure it. In a world where everything must be accountable, we need to know how effective and cost-effective our grit interventions have been.

The idea of measuring personality constructs like ‘grit’ worries even Angela Duckworth. She writes (Duckworth, 2016):

These days, however, I worry I’ve contributed, inadvertently, to an idea I vigorously oppose: high-stakes character assessment. New federal legislation can be interpreted as encouraging states and schools to incorporate measures of character into their accountability systems. This year, nine California school districts will begin doing this. But we’re nowhere near ready — and perhaps never will be — to use feedback on character as a metric for judging the effectiveness of teachers and schools. We shouldn’t be rewarding or punishing schools for how students perform on these measures.

Diane Ravitch (Ravitch, 2016) makes the point rather more forcefully: ‘The urge to quantify the unmeasurable must be recognized for what it is: stupid; arrogant; harmful; foolish, yet another way to standardize our beings’. But, like it or not, attempts to measure ‘grit’ and ‘grit’ interventions are unlikely to go away any time soon.

‘Grit’ and technology

Whenever there is talk about educational measurement and metrics, we are never far away from the world of edtech. It may not have escaped your notice that the OECD and the US Department of State for Education, enthusiasts for promoting ‘grit’, are also major players in the promotion of the datafication of education. The same holds true for organisations like the World Education Forum, the World Bank and the various philanthro-capitalist foundations to which I have referred so often in this blog. Advocacy of social and emotional learning goes hand in hand with edtech advocacy.

Two fascinating articles by Ben Williamson (2017; 2019) focus on ClassDojo, which, according to company information, reaches more than 10 million children globally every day. The founding directors of ClassDojo, writes Ben Williamson (2017), ‘explicitly describe its purpose as promoting ‘character development’ in schools and it is underpinned by particular psychological concepts from character research. Its website approvingly cites the journalist Paul Tough, author of two books on promoting ‘grit’ and ‘character’ in children, and is informed by character research conducted with the US network of KIPP charter schools (Knowledge is Power Program)’. In a circular process, ClassDojo has also ‘helped distribute and popularise concepts such as growth mindset, grit and mindfulness’ (Williamson, 2019).

The connections between ‘grit’ and edtech are especially visible when we focus on Stanford and Silicon Valley. ClassDojo was born in Palo Alto. Duckworth was a consulting scholar at Stanford 2014 -15, where Carol Dweck is a Professor of Psychology. Dweck is the big name behind growth mindset theory, which, as Sarah Mercer and Zoltán Dörnyei indicate, is closely related to ‘grit’. Dweck is also the co-founder of MindsetWorks, whose ‘Brainology’ product is ‘an online interactive program in which middle school students learn about how the brain works, how to strengthen their own brains, and how to ….’. Stanford is also home to the Stanford Lytics Lab, ‘which has begun applying new data analytics techniques to the measurement of non-cognitive learning factors including perseverance, grit, emotional state, motivation and self-regulation’, as well as the Persuasive Technologies Lab, ‘which focuses on the development of machines designed to influence human beliefs and behaviors across domains including health, business, safety, and education’ (Williamson, 2017). The Professor of Education Emeritus at Stanford is Linda Darling-Hammond, one of the most influential educators in the US. Darling-Hammond is known, among many other things, for collaborating with Pearson to develop the edTPA, ‘a nationally available, performance-based assessment for measuring the effectiveness of teacher candidates’. She is also a strong advocate of social-emotional learning initiatives and extols the virtues of ‘developing grit and a growth mindset’ (Hamadi & Darling-Hammond, 2015).

The funding of grit

Angela Duckworth’s Character Lab (‘Our mission is to advance scientific insights that help kids thrive’) is funded by, among others, the Chan Zuckerberg Initiative, the Bezos Family Foundation and Stanford’s Mindset Scholars Network. Precisely how much money Character Lab has is difficult to ascertain, but the latest grant from the Chan Zuckerberg Initiative was worth $1,912,000 to cover the period 2018 – 2021. Covering the same period, the John Templeton Foundation, donated $3,717,258 , the purpose of the grant being to ‘make character development fast, frictionless, and fruitful’.

In an earlier period (2015 – 2018), the Walton Family Foundation pledged $6.5 millionto promote and measure character education, social-emotional learning, and grit’, with part of this sum going to Character Lab and part going to similar research at Harvard Graduate School of Education. Character Lab also received $1,300,000 from the Overdeck Family Foundation for the same period.

It is not, therefore, an overstatement to say that ‘grit’ is massively funded. The funders, by and large, are the same people who have spent huge sums promoting personalized learning through technology (see my blog post Personalized learning: Hydra and the power of ambiguity). Whatever else it might be, ‘grit’ is certainly ‘a commercial tech interest’ (as Ben Williamson put it in a recent tweet).


In the 2010 Cohen brothers’ film, ‘True Grit’, the delinquent ‘kid’, Moon, is knifed by his partner, Quincy. Turning to Rooster Cogburn, the man of true grit, Moon begs for help. In response, Cogburn looks at the dying kid and deadpans ‘I can do nothing for you, son’.


Belfield, C., Bowden, A., Klapp, A., Levin, H., Shand, R., & Zander, S. (2015). The Economic Value of Social and Emotional Learning. Journal of Benefit-Cost Analysis, 6(3), pp. 508-544. doi:10.1017/bca.2015.55

Cabanas, E. & Illouz, E. (2019). Manufacturing Happy Citizens. Cambridge: Polity Press.

Chaykowski, K. (2017). How ClassDojo Built One Of The Most Popular Classroom Apps By Listening To Teachers. Forbes, 22 May, 2017.

Credé, M. (2018). What shall we do about grit? A critical review of what we know and what we don’t know. Educational Researcher, 47(9), 606-611.

Credé, M., Tynan, M. C., & Harms, P. D. (2017). Much ado about grit: A meta-analytic synthesis of the grit literature. Journal of Personality and Social Psychology, 113(3), 492. doi:10.1037/pspp0000102

Dahl, M. (2016). Don’t Believe the Hype About Grit, Pleads the Scientist Behind the Concept. The Cut, May 9, 2016.

De Bruyckere, P., Kirschner, P. A. & Hulshof, C. (2020). More Urban Myths about Learning and Education. Routledge.

Duckworth, A. (2016). Don’t Grade Schools on Grit. New York Times, March 26, 2016

Ecclestone, K. (2012). From emotional and psychological well-being to character education: Challenging policy discourses of behavioural science and ‘vulnerability’. Research Papers in Education, 27 (4), pp. 463-480

EquiTEA (2018). The Problem with Teaching ‘Grit’. Medium, 11 December 2018.

Gutman, L. M. & Schoon, I. (2013). The impact of non-cognitive skills on outcomes for young people: Literature review. London: Institute of Education, University of London

Hamedani, M. G. & Darling-Hammond, L. (2015). Social Emotional Learning in High School: How Three Urban High Schools Engage, Educate, and Empower Youth. Stanford Center for Opportunity Policy in Education

Kirschner, P.A. & Neelen, M. (2016). To Grit Or Not To Grit: That’s The Question. 3-Star Learning Experiences, July 5, 2016

Illouz, E. (2007). Cold Intimacies: The making of emotional capitalism. Cambridge: Polity Press

Kautz, T., Heckman, J. J., Diris, R., ter Weel, B & Borghans, L. (2014). Fostering and Measuring Skills: Improving Cognitive and Non-cognitive Skills to Promote Lifetime Success. OECD Education Working Papers 110, OECD Publishing.

Mercer, S. & Dörnyei, Z. (2020). Engaging Language Learners in Contemporary Classrooms. Cambridge University Press.

Muenks, K., Wigfield, A., Yang, J. S., & O’Neal, C. R. (2017). How true is grit? Assessing its relations to high school and college students’ personality characteristics, self-regulation, engagement, and achievement. Journal of Educational Psychology, 109, pp. 599–620.

Ravitch, D. (2016). Angela Duckworth, please don’t assess grit. Blog post, 27 March 2016,

Saltzman, K. J. (2017). Scripted Bodies. Routledge.

Tampio, N. (2016). Teaching ‘grit’ is bad for children, and bad for democracy. Aeon, 2 June:

Taşpinar, K., & Külekçi, G. (2018). GRIT: An Essential Ingredient of Success in the EFL Classroom. International Journal of Languages’ Education and Teaching, 6, 208-226.

Teimouri, Y., Plonsky, L., & Tabandeh, F. (2020). L2 Grit: Passion and perseverance for second-language learning. Language Teaching Research.

Wei, H., Gao, K., & Wang, W. (2019). Understanding the relationship between grit and foreign language performance among middle schools students: The roles of foreign language enjoyment and classroom Environment. Frontiers in Psychology, 10, 1508. doi: 10.3389/fpsyg.2019.01508

Williamson, B. (2017). Decoding ClassDojo: psycho-policy, social-emotional learning and persuasive educational technologies. Learning, Media and Technology, 42 (4): pp. 440-453, DOI: 10.1080/17439884.2017.1278020

Williamson, B. (2019). ‘Killer Apps for the Classroom? Developing Critical Perspectives on ClassDojo and the ‘Ed-tech’ Industry. Journal of Professional Learning, 2019 (Semester 2)

Yamashita, T. (2018). Grit and second language acquisition: Can passion and perseverance predict performance in Japanese language learning? Unpublished MA thesis, University of Massachusetts, Amherst.


Screenshot_20191011-200743_ChromeOver the last week, the Guardian has been running a series of articles on the global corporations that contribute most to climate change and the way that these vested interests lobby against changes to the law which might protect the planet. Beginning in the 1990s, an alliance of fossil fuel and automobile corporations, along with conservative think tanks and politicians, developed a ‘denial machine’ which sought to undermine the scientific consensus on climate change. Between 2003 and 2010, it has been estimated that over $550 million was received from a variety of sources to support this campaign. The Guardian’s current series is an update and reminder of the research into climate change denial that has been carried out in recent years.

In the past, it was easier to trace where the money came from (e.g. ExxonMobil or Koch Industries), but it appears that the cash is now being channelled through foundations like Donors Trust and Donors Capital, who, in turn, pass it on to other foundations and think tanks (see below) that promote the denial of climate change.

The connection between climate change denial and edtech becomes clear when you look at the organisations behind the ‘denial machine’. I have written about some of these organisations before (see this post ) so when I read the reports in the Guardian, there were some familiar names.

Besides their scepticism about climate change, all of the organisations believe that education should be market-driven, free from governmental interference, and characterised by consumer choice. These aims are facilitated by the deployment of educational technology. Here are some examples.

State Policy Network

The State Policy Network (SPN) is an American umbrella organization for a large group of conservative and libertarian think tanks that seek to influence national and global policies. Among other libertarian causes, it opposes climate change regulations and supports the privatisation of education, in particular the expansion of ‘digital education’.

The Cato Institute

The mission of the Cato Institute, a member of the SPN, ‘is to originate, disseminate, and increase understanding of public policies based on the principles of individual liberty, limited government, free markets, and peace. Our vision is to create free, open, and civil societies founded on libertarian principles’. The Institute has said that it had never been in the business of “promoting climate science denial”; it did not dispute human activity’s impact on the climate, but believed it was minimal. Turning to education, it believes that ‘states should institute school choice on a broad scale, moving toward a competitive education market. The only way to transform the system is to break up the long-standing government monopoly and use the dynamics of the market to create innovations, better methods, and new schools’. Innovations and better methods will, of course, be driven by technology.


FreedomWorks, another member of the SPN and another conservative and libertarian advocacy group, is widely associated with the Tea Party Movement . Recent posts on its blog have been entitled ‘The Climate Crisis that Wasn’t: Scientists Agree there is “No Cause for Alarm”’, ‘Climate Protesters: If You Want to Save the Planet, You Should Support Capitalism Not Socialism’ and ‘Electric Vehicle Tax Credit: Nothing But Regressive Cronyism’. Its approach to education is equally uncompromising. It seeks to abolish the US Department of Education, describes American schools as ‘failing’, wants market-driven educational provision and absolute parental choice . Technology will play a fundamental role in bringing about the desired changes: ‘just as computers and the Internet have fundamentally reshaped the way we do business, they will also soon reshape education’ .

The Heritage Foundation

The Heritage Foundation, the last of the SPN members that I’ll mention here, is yet another conservative American think tank which rejects the scientific consensus on climate change . Its line on education is neatly summed up in this extract from a blog post by a Heritage senior policy analyst: ‘Virtual or online learning is revolutionizing American education. It has the potential to dramatically expand the educational opportunities of American students, largely overcoming the geographic and demographic restrictions. Virtual learning also has the potential to improve the quality of instruction, while increasing productivity and lowering costs, ultimately reducing the burden on taxpayers‘.

The Institute of Economic Affairs

Just to show that the ‘denial machine’ isn’t an exclusively American phenomenon, I include ‘the UK’s most influential conservative think tank [which] has published at least four books, as well as multiple articles and papers, over two decades suggesting manmade climate change may be uncertain or exaggerated. In recent years the group has focused more on free-market solutions to reducing carbon emissions’ . It is an ‘associate member of the SPN’ . No surprise to discover that a member of the advisory council of the IEA is James Tooley, a close associate of Michael Barber, formerly Chief Education Advisor at Pearson. Tooley’s articles for the IEA include ‘Education without the State’  and ‘Transforming incentives will unleash the power of entrepreneurship in the education sector’ .

The IEA does not disclose its funding, but anyone interested in finding out more should look here ‘Revealed: how the UK’s powerful right-wing think tanks and Conservative MPs work together’ .

Microsoft, Facebook and Google

Let me be clear to start: Microsoft, Facebook and Google are not climate change deniers. However, Facebook and Microsoft are financial backers of the SPN. In a statement, a spokesperson for Microsoft said: “As a large company, Microsoft has great interest in the many policy issues discussed across the country. We have a longstanding record of engaging with a broad assortment of groups on a bipartisan basis, both at the national and local level. In regard to State Policy Network, Microsoft has focused our participation on their technology policy work group because it is valuable forum to hear various perspectives about technology challenges and to share potential solutions” . Google has made substantial contributions to the Competitive Enterprise Institute (a conservative US policy group ‘that was instrumental in convincing the Trump administration to abandon the Paris agreement and has criticised the White House for not dismantling more environmental rules). In the Guardian report, Google ‘defended its contributions, saying that its “collaboration” with organisations such as CEI “does not mean we endorse the organisations’ entire agenda”. “When it comes to regulation of technology, Google has to find friends wherever they can and I think it is wise that the company does not apply litmus tests to who they support,” the source said’ .

You have to wonder what these companies (all of whom support environmental causes in various ways) might consider more important than the future of the planet. Could it be that the libertarian think tanks are important allies in resisting any form of internet governance, in objecting to any constraints on the capture of data?

Back in the middle of the last century, the first interactive machines for language teaching appeared. Previously, there had been phonograph discs and wire recorders (Ornstein, 1968: 401), but these had never really taken off. This time, things were different. Buoyed by a belief in the power of technology, along with the need (following the Soviet Union’s successful Sputnik programme) to demonstrate the pre-eminence of the United States’ technological expertise, the interactive teaching machines that were used in programmed instruction promised to revolutionize language learning (Valdman, 1968: 1). From coast to coast, ‘tremors of excitement ran through professional journals and conferences and department meetings’ (Kennedy, 1967: 871). The new technology was driven by hard science, supported and promoted by the one of the most well-known and respected psychologists and public intellectuals of the day (Skinner, 1961).

In classrooms, the machines acted as powerfully effective triggers in generating situational interest (Hidi & Renninger, 2006). Even more exciting than the mechanical teaching machines were the computers that were appearing on the scene. ‘Lick’ Licklider, a pioneer in interactive computing at the Advanced Research Projects Agency in Arlington, Virginia, developed an automated drill routine for learning German by hooking up a computer, two typewriters, an oscilloscope and a light pen (Noble, 1991: 124). Students loved it, and some would ‘go on and on, learning German words until they were forced by scheduling to cease their efforts’. Researchers called the seductive nature of the technology ‘stimulus trapping’, and Licklider hoped that ‘before [the student] gets out from under the control of the computer’s incentives, [they] will learn enough German words’ (Noble, 1991: 125).

With many of the developed economies of the world facing a critical shortage of teachers, ‘an urgent pedagogical emergency’ (Hof, 2018), the new approach was considered to be extremely efficient and could equalise opportunity in schools across the country. It was ‘here to stay: [it] appears destined to make progress that could well go beyond the fondest dreams of its originators […] an entire industry is just coming into being and significant sales and profits should not be too long in coming’ (Kozlowski, 1961: 47).

Unfortunately, however, researchers and entrepreneurs had massively underestimated the significance of novelty effects. The triggered situational interest of the machines did not lead to intrinsic individual motivation. Students quickly tired of, and eventually came to dislike, programmed instruction and the machines that delivered it (McDonald et al.: 2005: 89). What’s more, the machines were expensive and ‘research studies conducted on its effectiveness showed that the differences in achievement did not constantly or substantially favour programmed instruction over conventional instruction (Saettler, 2004: 303). Newer technologies, with better ‘stimulus trapping’, were appearing. Programmed instruction lost its backing and disappeared, leaving as traces only its interest in clearly defined learning objectives, the measurement of learning outcomes and a concern with the efficiency of learning approaches.

Hot on the heels of programmed instruction came the language laboratory. Futuristic in appearance, not entirely unlike the deck of the starship USS Enterprise which launched at around the same time, language labs captured the public imagination and promised to explore the final frontiers of language learning. As with the earlier teaching machines, students were initially enthusiastic. Even today, when language labs are introduced into contexts where they may be perceived as new technology, they can lead to high levels of initial motivation (e.g. Ramganesh & Janaki, 2017).

Given the huge investments into these labs, it’s unfortunate that initial interest waned fast. By 1969, many of these rooms had turned into ‘“electronic graveyards,” sitting empty and unused, or perhaps somewhat glorified study halls to which students grudgingly repair to don headphones, turn down the volume, and prepare the next period’s history or English lesson, unmolested by any member of the foreign language faculty’ (Turner, 1969: 1, quoted in Roby, 2003: 527). ‘Many second language students shudder[ed] at the thought of entering into the bowels of the “language laboratory” to practice and perfect the acoustical aerobics of proper pronunciation skills. Visions of sterile white-walled, windowless rooms, filled with endless bolted-down rows of claustrophobic metal carrels, and overseen by a humorless, lab director, evoke[d] fear in the hearts of even the most stout-hearted prospective second-language learners (Wiley, 1990: 44).

By the turn of this century, language labs had mostly gone, consigned to oblivion by the appearance of yet newer technology: the internet, laptops and smartphones. Education had been on the brink of being transformed through new learning technologies for decades (Laurillard, 2008: 1), but this time it really was different. It wasn’t just one technology that had appeared, but a whole slew of them: ‘artificial intelligence, learning analytics, predictive analytics, adaptive learning software, school management software, learning management systems (LMS), school clouds. No school was without these and other technologies branded as ‘superintelligent’ by the late 2020s’ (Macgilchrist et al., 2019). The hardware, especially phones, was ubiquitous and, therefore, free. Unlike teaching machines and language laboratories, students were used to using the technology and expected to use their devices in their studies.

A barrage of publicity, mostly paid for by the industry, surrounded the new technologies. These would ‘meet the demands of Generation Z’, the new generation of students, now cast as consumers, who ‘were accustomed to personalizing everything’.  AR, VR, interactive whiteboards, digital projectors and so on made it easier to ‘create engaging, interactive experiences’. The ‘New Age’ technologies made learning fun and easy,  ‘bringing enthusiasm among the students, improving student engagement, enriching the teaching process, and bringing liveliness in the classroom’. On top of that, they allowed huge amounts of data to be captured and sold, whilst tracking progress and attendance. In any case, resistance to digital technology, said more than one language teaching expert, was pointless (Styring, 2015).slide

At the same time, technology companies increasingly took on ‘central roles as advisors to national governments and local districts on educational futures’ and public educational institutions came to be ‘regarded by many as dispensable or even harmful’ (Macgilchrist et al., 2019).

But, as it turned out, the students of Generation Z were not as uniformly enthusiastic about the new technology as had been assumed, and resistance to digital, personalized delivery in education was not long in coming. In November 2018, high school students at Brooklyn’s Secondary School for Journalism staged a walkout in protest at their school’s use of Summit Learning, a web-based platform promoting personalized learning developed by Facebook. They complained that the platform resulted in coursework requiring students to spend much of their day in front of a computer screen, that made it easy to cheat by looking up answers online, and that some of their teachers didn’t have the proper training for the curriculum (Leskin, 2018). Besides, their school was in a deplorable state of disrepair, especially the toilets. There were similar protests in Kansas, where students staged sit-ins, supported by their parents, one of whom complained that ‘we’re allowing the computers to teach and the kids all looked like zombies’ before pulling his son out of the school (Bowles, 2019). In Pennsylvania and Connecticut, some schools stopped using Summit Learning altogether, following protests.

But the resistance did not last. Protesters were accused of being nostalgic conservatives and educationalists kept largely quiet, fearful of losing their funding from the Chan Zuckerberg Initiative (Facebook) and other philanthro-capitalists. The provision of training in grit, growth mindset, positive psychology and mindfulness (also promoted by the technology companies) was ramped up, and eventually the disaffected students became more quiescent. Before long, the data-intensive, personalized approach, relying on the tools, services and data storage of particular platforms had become ‘baked in’ to educational systems around the world (Moore, 2018: 211). There was no going back (except for small numbers of ultra-privileged students in a few private institutions).

By the middle of the century (2155), most students, of all ages, studied with interactive screens in the comfort of their homes. Algorithmically-driven content, with personalized, adaptive tests had become the norm, but the technology occasionally went wrong, leading to some frustration. One day, two young children discovered a book in their attic. Made of paper with yellow, crinkly pages, where ‘the words stood still instead of moving the way they were supposed to’. The book recounted the experience of schools in the distant past, where ‘all the kids from the neighbourhood came’, sitting in the same room with a human teacher, studying the same things ‘so they could help one another on the homework and talk about it’. Margie, the younger of the children at 11 years old, was engrossed in the book when she received a nudge from her personalized learning platform to return to her studies. But Margie was reluctant to go back to her fractions. She ‘was thinking about how the kids must have loved it in the old days. She was thinking about the fun they had’ (Asimov, 1951).


Asimov, I. 1951. The Fun They Had. Accessed September 20, 2019.

Bowles, N. 2019. ‘Silicon Valley Came to Kansas Schools. That Started a Rebellion’ The New York Times, April 21. Accessed September 20, 2019.

Hidi, S. & Renninger, K.A. 2006. ‘The Four-Phase Model of Interest Development’ Educational Psychologist, 41 (2), 111 – 127

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47 (4): 445-465

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 (6): 47 – 54

Laurillard, D. 2008. Digital Technologies and their Role in Achieving our Ambitions for Education. London: Institute for Education.

Leskin, P. 2018. ‘Students in Brooklyn protest their school’s use of a Zuckerberg-backed online curriculum that Facebook engineers helped build’ Business Insider, 12.11.18 Accessed 20 September 2019.

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 (2): 84 – 98

Macgilchrist, F., Allert, H. & Bruch, A. 2019. ‚Students and society in the 2020s. Three future ‘histories’ of education and technology’. Learning, Media and Technology, )

Moore, M. 2018. Democracy Hacked. London: Oneworld

Noble, D. D. 1991. The Classroom Arsenal. London: The Falmer Press

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 (7), 401 – 410

Ramganesh, E. & Janaki, S. 2017. ‘Attitude of College Teachers towards the Utilization of Language Laboratories for Learning English’ Asian Journal of Social Science Studies; Vol. 2 (1): 103 – 109

Roby, W.B. 2003. ‘Technology in the service of foreign language teaching: The case of the language laboratory’ In D. Jonassen (ed.), Handbook of Research on Educational Communications and Technology, 2nd ed.: 523 – 541. Mahwah, NJ.: Lawrence Erlbaum Associates

Saettler, P. 2004. The Evolution of American Educational Technology. Greenwich, Conn.: Information Age Publishing

Skinner, B. F. 1961. ‘Teaching Machines’ Scientific American, 205(5), 90-107

Styring, J. 2015. Engaging Generation Z. Cambridge English webinar 2015

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14.

Wiley, P. D. 1990. ‘Language labs for 1990: User-friendly, expandable and affordable’. Media & Methods, 27(1), 44–47)


Jenny Holzer, Protect me from what I want

It’s international ELT conference season again, with TESOL Chicago having just come to a close and IATEFL Brighton soon to start. I decided to take a look at how the subject of personalized learning will be covered at the second of these. Taking the conference programme , I trawled through looking for references to my topic.

Jing_word_cloudMy first question was: how do conference presenters feel about personalised learning? One way of finding out is by looking at the adjectives that are found in close proximity. This is what you get.

The overall enthusiasm is even clearer when the contexts are looked at more closely. Here are a few examples:

  • inspiring assessment, personalising learning
  • personalised training can contribute to professionalism and […] spark ideas for teacher trainers
  • a personalised educational experience that ultimately improves learner outcomes
  • personalised teacher development: is it achievable?

Particularly striking is the complete absence of anything that suggests that personalized learning might not be a ‘good thing’. The assumption throughout is that personalized learning is desirable and the only question that is asked is how it can be achieved. Unfortunately (and however much we might like to believe that it is a ‘good thing’), there is a serious lack of research evidence which demonstrates that this is the case. I have written about this here and here and here . For a useful summary of the current situation, see Benjamin Riley’s article where he writes that ‘it seems wise to ask what evidence we presently have that personalized learning works. Answer: Virtually none. One remarkable aspect of the personalized-learning craze is how quickly the concept has spread despite the almost total absence of rigorous research in support of it, at least thus far.’

Given that personalized learning can mean so many things and given the fact that people do not have space to define their terms in their conference abstracts, it is interesting to see what other aspects of language learning / teaching it is associated with. The four main areas are as follows (in alphabetical order):

  • assessment (especially formative assessment) / learning outcomes
  • continuous professional development
  • learner autonomy
  • technology / blended learning

The IATEFL TD SIG would appear to be one of the main promoters of personalized learning (or personalized teacher development) with a one-day pre-conference event entitled ‘Personalised teacher development – is it achievable?’ and a ‘showcase’ forum entitled ‘Forum on Effective & personalised: the holy grail of CPD’. Amusingly (but coincidentally, I suppose), the forum takes place in the ‘Cambridge room’ (see below).

I can understand why the SIG organisers may have chosen this focus. It’s something of a hot topic, and getting hotter. For example:

  • Cambridge University Press has identified personalization as one of the ‘six key principles of effective teacher development programmes’ and is offering tailor-made teacher development programmes for institutions.
  • NILE and Macmillan recently launched a partnership whose brief is to ‘curate personalised professional development with an appropriate mix of ‘formal’ and ‘informal’ learning delivered online, blended and face to face’.
  • Pearson has developed the Pearson’s Teacher Development Interactive (TDI) – ‘an interactive online course to train and certify teachers to deliver effective instruction in English as a foreign language […] You can complete each module on your own time, at your own pace from anywhere you have access to the internet.’

These examples do not, of course, provide any explanation for why personalized learning is a hot topic, but the answer to that is simple. Money. Billions and billions, and if you want a breakdown, have a look at the appendix of Monica Bulger’s report, ‘Personalized Learning: The Conversations We’re Not Having’ . Starting with Microsoft and the Gates Foundation plus Facebook and the Chan / Zuckerberg Foundation, dozens of venture philanthropists have thrown unimaginable sums of money at the idea of personalized learning. They have backed up their cash with powerful lobbying and their message has got through. Consent has been successfully manufactured.

PearsonOne of the most significant players in this field is Pearson, who have long been one of the most visible promoters of personalized learning (see the screen capture). At IATEFL, two of the ten conference abstracts which include the word ‘personalized’ are directly sponsored by Pearson. Pearson actually have ten presentations they have directly sponsored or are very closely associated with. Many of these do not refer to personalized learning in the abstract, but would presumably do so in the presentations themselves. There is, for example, a report on a professional development programme in Brazil using TDI (see above). There are two talks about the GSE, described as a tool ‘used to provide a personalised view of students’ language’. The marketing intent is clear: Pearson is to be associated with personalized learning (which is, in turn, associated with a variety of tech tools) – they even have a VP of data analytics, data science and personalized learning.

But the direct funding of the message is probably less important these days than the reinforcement, by those with no vested interests, of the set of beliefs, the ideology, which underpin the selling of personalized learning products. According to this script, personalized learning can promote creativity, empowerment, inclusiveness and preparedness for the real world of work. It sets itself up in opposition to lockstep and factory models of education, and sets learners free as consumers in a world of educational choice. It is a message with which it is hard for many of us to disagree.

manufacturing consentIt is also a marvellous example of propaganda, of the way that consent is manufactured. (If you haven’t read it yet, it’s probably time to read Herman and Chomsky’s ‘Manufacturing Consent: The Political Economy of the Mass Media’.) An excellent account of the way that consent for personalized learning has been manufactured can be found at Benjamin Doxtdator’s blog .

So, a hot topic it is, and its multiple inclusion in the conference programme will no doubt be welcomed by those who are selling ‘personalized’ products. It must be very satisfying to see how normalised the term has become, how it’s no longer necessary to spend too much on promoting the idea, how it’s so associated with technology, (formative) assessment, autonomy and teacher development … since others are doing it for you.

440px-HydraOrganization_HeadLike the mythical monster, the ancient Hydra organisation of Marvel Comics grows two more heads if one is cut off, becoming more powerful in the process. With the most advanced technology on the planet and with a particular focus on data gathering, Hydra operates through international corporations and highly-placed individuals in national governments.
Personalized learning has also been around for centuries. Its present incarnation can be traced to the individualized instructional programmes of the late 19th century which ‘focused on delivering specific subject matter […] based on the principles of scientific management. The intent was to solve the practical problems of the classroom by reducing waste and increasing efficiency, effectiveness, and cost containment in education (Januszewski, 2001: 58). Since then, personalized learning has adopted many different names, including differentiated instruction, individualized instruction, individually guided education, programmed instruction, personalized learning, personalized instruction, and individually prescribed instruction.
Disambiguating the terms has never been easy. In the world of language learning / teaching, it was observed back in the early 1970s ‘that there is little agreement on the description and definition of individualized foreign language instruction’ (Garfinkel, 1971: 379). The point was echoed a few years later by Grittner (1975: 323): it ‘means so many things to so many different people’. A UNESCO document (Chaix & O’Neil, 1978: 6) complained that ‘the term ‘individualization’ and the many expressions using the same root, such as ‘individualized learning’, are much too ambiguous’. Zoom forward to the present day and nothing has changed. Critiquing the British government’s focus on personalized learning, the Institute for Public Policy Research (Johnson, 2004: 17) wrote that it ‘remains difficult to be certain what the Government means by personalised learning’. In the U.S. context, a piece by Sean Cavanagh (2014) in Education Week (which is financially supported by the Gates Foundation) noted that although ‘the term “personalized learning” seems to be everywhere, there is not yet a shared understanding of what it means’. In short, as Arthur Levine  has put it, the words personalized learning ‘generate more heat than light’.
Despite the lack of clarity about what precisely personalized learning actually is, it has been in the limelight of language teaching and learning since before the 1930s when Pendleton (1930: 195) described the idea as being more widespread than ever before. Zoom forward to the 1970s and we find it described as ‘one of the major movements in second-language education at the present time’ (Chastain, 1975: 334). In 1971, it was described as ‘a bandwagon onto which foreign language teachers at all levels are jumping’ (Altman & Politzer, 1971: 6). A little later, in the 1980s, ‘words or phrases such as ‘learner-centered’, ‘student-centered’, ‘personalized’, ‘individualized’, and ‘humanized’ appear as the most frequent modifiers of ‘instruction’ in journals and conferences of foreign language education (Altman & James, 1980). Continue to the present day, and we find that personalized learning is at the centre of the educational policies of governments across the world. Between 2012 and 2015, the U.S. Department of Education threw over half a billion dollars at personalized learning initiatives (Bulger, 2016: 22). At the same time, there is massive sponsorship of personalized learning from the biggest international corporations (the William and Flora Hewlett Foundation, Rogers Family Foundation, Susan and Michael Dell Foundation, and the Eli and Edythe Broad Foundation) (Bulger, 2016: 22). The Bill & Melinda Gates Foundation has invested nearly $175 million in personalized learning development and Facebook’s Mark Zuckerberg is ploughing billions of dollars into it.
There has, however, been one constant: the belief that technology can facilitate the process of personalization (whatever that might be). Technology appears to offer the potential to realise the goal of personalized learning. We have come a long way from Sydney Pressey’s attempts in the 1920s to use teaching machines to individualize instruction. At that time, the machines were just one part of the programme (and not the most important). But each new technology has offered a new range of possibilities to be exploited and each new technology, its advocates argue, ‘will solve the problems better than previous efforts’ (Ferster, 2014: xii). With the advent of data-capturing learning technologies, it has now become virtually impossible to separate advocacy of personalized instruction from advocacy of digitalization in education. As the British Department for Education has put it ‘central to personalised learning is schools’ use of data (DfES (2005) White Paper: Higher Standards, Better Schools for All. London, Department for Education and Skills, para 4.50). When the U.S. Department of Education threw half a billion dollars at personalized learning initiatives, the condition was that these projects ‘use collaborative, data-based strategies and 21st century tools to deliver instruction’ (Bulger, 2016: 22).
Is it just a coincidence that the primary advocates of personalized learning are either vendors of technology or are very close to them in the higher echelons of Hydra (World Economic Forum, World Bank, IMF, etc.)? ‘Personalized learning’ has ‘almost no descriptive value’: it is ‘a term that sounds good without the inconvenience of having any obviously specific pedagogical meaning’ (Feldstein & Hill, 2016: 30). It evokes positive responses, with its ‘nod towards more student-centered learning […], a move that honors the person learning not just the learning institution’ (Watters, 2014). As such, it is ‘a natural for marketing purposes’ since nobody in their right mind would want unpersonalized or depersonalized learning (Feldstein & Hill, 2016: 25). It’s ‘a slogan that nobody’s going to be against, and everybody’s going to be for. Nobody knows what it means, because it doesn’t mean anything. Its crucial value is that it diverts your attention from a question that does mean something: Do you support our policy?’ (Chomsky, 1997).
None of the above is intended to suggest that there might not be goals that come under the ‘personalized learning’ umbrella that are worth working towards. But that’s another story – one I will return to in another post. For the moment, it’s just worth remembering that, in one of the Marvel Comics stories, Captain America, who appeared to be fighting the depersonalized evils of the world, was actually a deep sleeper agent for Hydra.

Altman, H.B. & James, C.V. (eds.) 1980. Foreign Language Teaching: Meeting Individual Needs. Oxford: Pergamon Press
Altman, H.B. & Politzer, R.L. (eds.) 1971. Individualizing Foreign Language Instruction: Proceedings of the Stanford Conference, May 6 – 8, 1971. Washington, D.C.: Office of Education, U.S. Department of Health, Education, and Welfare
Bulger, M. 2016. Personalized Learning: The Conversations We’re Not Having. New York: Data and Society Research Institute.
Cavanagh, S. 2014. ‘What Is ‘Personalized Learning’? Educators Seek Clarity’ Education Week
Chaix, P., & O’Neil, C. 1978. A Critical Analysis of Forms of Autonomous Learning (Autodidaxy and Semi-autonomy in the Field of Foreign Language Learning. Final Report. UNESCO Doc Ed 78/WS/58
Chastain, K. 1975. ‘An Examination of the Basic Assumptions of “Individualized” Instruction’ The Modern Language Journal 59 / 7: 334 – 344
Chomsky, N. 1997. Media Control: The Spectacular Achievements of Propaganda. New York: Seven Stories Press
Feldstein, M. & Hill, P. 2016. ‘Personalized Learning: What it Really is and why it Really Matters’ EduCause Review March / April 2016: 25 – 35
Ferster, B. 2014. Teaching Machines. Baltimore: John Hopkins University Press
Garfinkel, A. 1971. ‘Stanford University Conference on Individualizing Foreign Language Instruction, May 6-8, 1971.’ The Modern Language Journal Vol. 55, No. 6 (Oct., 1971), pp. 378-381
Grittner, F. M. 1975. ‘Individualized Instruction: An Historical Perspective’ The Modern Language Journal 59 / 7: 323 – 333
Januszewski, A. 2001. Educational Technology: The Development of a Concept. Englewood, Colorado: Libraries Unlimited
Johnson, M. 2004. Personalised Learning – an Emperor’s Outfit? London: Institute for Public Policy Research
Pendleton, C. S. 1930. ‘Personalizing English Teaching’ Peabody Journal of Education 7 / 4: 195 – 200
Watters, A. 2014. The problem with ‘personalization’ Hack Education


In the last post, I looked at issues concerning self-pacing in personalized language learning programmes. This time, I turn to personalized goal-setting. Most definitions of personalized learning, such as that offered by Next Generation Learning Challenges (a non-profit supported by Educause, the Gates Foundation, the Broad Foundation, the Hewlett Foundation, among others), argue that ‘the default perspective [should be] the student’s—not the curriculum, or the teacher, and that schools need to adjust to accommodate not only students’ academic strengths and weaknesses, but also their interests, and what motivates them to succeed.’ It’s a perspective shared by the United States National Education Technology Plan 2017 , which promotes the idea that learning objectives should vary based on learner needs, and should often be self-initiated. It’s shared by the massively funded Facebook initiative that is developing software that ‘puts students in charge of their lesson plans’, as the New York Times put it. How, precisely, personalized goal-setting can be squared with standardized, high-stakes testing is less than clear. Are they incompatible by any chance?

In language learning, the idea that learners should have some say in what they are learning is not new, going back, at least, to the humanistic turn in the 1970s. Wilga Rivers advocated ‘giving the students opportunity to choose what they want to learn’ (Rivers, 1971: 165). A few years later, Renee Disick argued that the extent to which a learning programme can be called personalized (although she used the term ‘individualized’) depends on the extent to which learners have a say in the choice of learning objectives and the content of learning (Disick, 1975). Coming more up to date, Penny Ur advocated giving learners ‘a measure of freedom to choose how and what to learn’ (Ur, 1996: 233).

The benefits of personalized goal-setting

Personalized goal-setting is closely related to learner autonomy and learner agency. Indeed, it is hard to imagine any meaningful sense of learner autonomy or agency without some control of learning objectives. Without this control, it will be harder for learners to develop an L2 self. This matters because ‘ultimate attainment in second-language learning relies on one’s agency … [it] is crucial at the point where the individuals must not just start memorizing a dozen new words and expressions but have to decide on whether to initiate a long, painful, inexhaustive, and, for some, never-ending process of self-translation. (Pavlenko & Lantolf, 2000: 169 – 170). Put bluntly, if learners ‘have some responsibility for their own learning, they are more likely to be engaged than if they are just doing what the teacher tells them to’ (Harmer, 2012: 90). A degree of autonomy should lead to increased motivation which, in turn, should lead to increased achievement (Dickinson, 1987: 32; Cordova & Lepper, 1996: 726).

Strong evidence for these claims is not easy to provide, not least since autonomy and agency cannot be measured. However, ‘negative evidence clearly shows that a lack of agency can stifle learning by denying learners control over aspects of the language-learning process’ (Vandergriff, 2016: 91). Most language teachers (especially in compulsory education) have witnessed the negative effects that a lack of agency can generate in some students. Irrespective of the extent to which students are allowed to influence learning objectives, the desirability of agency / autonomy appears to be ‘deeply embedded in the professional consciousness of the ELT community’ (Borg and Al-Busaidi, 2012; Benson, 2016: 341). Personalized goal-setting may not, for a host of reasons, be possible in a particular learning / teaching context, but in principle it would seem to be a ‘good thing’.

Goal-setting and technology

The idea that learners might learn more and better if allowed to set their own learning objectives is hardly new, dating back at least one hundred years to the establishment of Montessori’s first Casa dei Bambini. In language teaching, the interest in personalized learning that developed in the 1970s (see my previous post) led to numerous classroom experiments in personalized goal-setting. These did not result in lasting changes, not least because the workload of teachers became ‘overwhelming’ (Disick, 1975: 128).

Closely related was the establishment of ‘self-access centres’. It was clear to anyone, like myself, who was involved in the setting-up and maintenance of a self-access centre, that they cost a lot, in terms of both money and work (Ur, 2012: 236). But there were also nagging questions about how effective they were (Morrison, 2005). Even more problematic was a bigger question: did they actually promote the learner autonomy that was their main goal?

Post-2000, online technology rendered self-access centres redundant: who needs the ‘walled garden’ of a self-access centre when ‘learners are able to connect with multiple resources and communities via the World Wide Web in entirely individual ways’ (Reinders, 2012)? The cost problem of self-access centres was solved by the web. Readily available now were ‘myriad digital devices, software, and learning platforms offering educators a once-unimaginable array of options for tailoring lessons to students’ needs’ (Cavanagh, 2014). Not only that … online technology promised to grant agency, to ‘empower language learners to take charge of their own learning’ and ‘to provide opportunities for learners to develop their L2 voice’ (Vandergriff, 2016: 32). The dream of personalized learning has become inseparable from the affordances of educational technologies.

It is, however, striking just how few online modes of language learning offer any degree of personalized goal-setting. Take a look at some of the big providers – Voxy, Busuu, Duolingo, Rosetta Stone or Babbel, for example – and you will find only the most token nods to personalized learning objectives. Course providers appear to be more interested in claiming their products are personalized (‘You decide what you want to learn and when!’) than in developing a sufficient amount of content to permit personalized goal-setting. We are left with the ELT equivalent of personalized cans of Coke: a marketing tool.


The problems with personalized goal-setting

Would language learning products, such as those mentioned above, be measurably any better if they did facilitate the personalization of learning objectives in a significant way? Would they be able to promote learner autonomy and agency in a way that self-access centres apparently failed to achieve? It’s time to consider the square quotes that I put around ‘good thing’.

Researchers have identified a number of potential problems with goal-setting. I have already mentioned the problem of reconciling personalized goals and standardized testing. In most learning contexts, educational authorities (usually the state) regulate the curriculum and determine assessment practices. It is difficult to see, as Campbell et al. (Campbell et al., 2007: 138) point out, how such regulation ‘could allow individual interpretations of the goals and values of education’. Most assessment systems ‘aim at convergent outcomes and homogeneity’ (Benson, 2016: 345) and this is especially true of online platforms, irrespective of their claims to ‘personalization’. In weak (typically internal) assessment systems, the potential for autonomy is strongest, but these are rare.

In all contexts, it is likely that personalized goal-setting will only lead to learning gains when a number of conditions are met. The goals that are chosen need to be both specific, measurable, challenging and non-conflicting (Ordóñez et al. 2009: 2-3). They need to be realistic: if not, it is unlikely that self-efficacy (a person’s belief about their own capability to achieve or perform to a certain level) will be promoted (Koda-Dallow & Hobbs, 2005), and without self-efficacy, improved performance is also unlikely (Bandura, 1997). The problem is that many learners lack self-efficacy and are poor self-regulators. These things are teachable / learnable, but require time and support. Many learners need help in ‘becoming aware of themselves and their own understandings’ (McMahon & Oliver, 2001: 1304). If they do not get it, the potential advantages of personalized goal-setting will be negated. As learners become better self-regulators, they will want and need to redefine their learning goals: goal-setting should be an iterative process (Hussey & Smith, 2003: 358). Again, support will be needed. In online learning, such support is not common.

A further problem that has been identified is that goal-setting can discourage a focus on non-goal areas (Ordóñez et al. 2009: 2) and can lead to ‘a focus on reaching the goal rather than on acquiring the skills required to reach it’ (Locke & Latham, 2006: 266). We know that much language learning is messy and incidental. Students do not only learn the particular thing that they are studying at the time (the belief that they do was described by Dewey as ‘the greatest of all pedagogical fallacies’). Goal-setting, even when personalized, runs the risk of promoting tunnel-vision.

The incorporation of personalized goal-setting in online language learning programmes is, in so many ways, a far from straightforward matter. Simply tacking it onto existing programmes is unlikely to result in anything positive: it is not an ‘over-the-counter treatment for motivation’ (Ordóñez et al.:2). Course developers will need to look at ‘the complex interplay between goal-setting and organizational contexts’ (Ordóñez et al. 2009: 16). Motivating students is not simply ‘a matter of the teacher deploying the correct strategies […] it is an intensely interactive process’ (Lamb, M. 2017). More generally, developers need to move away from a positivist and linear view of learning as a technical process where teaching interventions (such as the incorporation of goal-setting, the deployment of gamification elements or the use of a particular algorithm) will lead to predictable student outcomes. As Larry Cuban reminds us, ‘no persuasive body of evidence exists yet to confirm that belief (Cuban, 1986: 88). The most recent research into personalized learning has failed to identify any single element of personalization that can be clearly correlated with improved outcomes (Pane et al., 2015: 28).

In previous posts, I considered learning styles and self-pacing, two aspects of personalized learning that are highly problematic. Personalized goal-setting is no less so.


Bandura, A. 1997. Self-efficacy: The exercise of control. New York: W.H. Freeman and Company

Benson, P. 2016. ‘Learner Autonomy’ in Hall, G. (ed.) The Routledge Handbook of English Language Teaching. Abingdon: Routledge. pp.339 – 352

Borg, S. & Al-Busaidi, S. 2012. ‘Teachers’ beliefs and practices regarding learner autonomy’ ELT Journal 66 / 3: 283 – 292

Cavanagh, S. 2014. ‘What Is ‘Personalized Learning’? Educators Seek Clarity’ Education Week

Cordova, D. I. & Lepper, M. R. 1996. ‘Intrinsic Motivation and the Process of Learning: Beneficial Effects of Contextualization, Personalization, and Choice’ Journal of Educational Psychology 88 / 4: 715 -739

Cuban, L. 1986. Teachers and Machines. New York: Teachers College Press

Dickinson, L. 1987. Self-instruction in Language Learning. Cambridge: Cambridge University Press

Disick, R.S. 1975 Individualizing Language Instruction: Strategies and Methods. New York: Harcourt Brace Jovanovich

Harmer, J. 2012. Essential Teacher Knowledge. Harlow: Pearson Education

Hussey, T. & Smith, P. 2003. ‘The Uses of Learning Outcomes’ Teaching in Higher Education 8 / 3: 357 – 368

Lamb, M. 2017 (in press) ‘The motivational dimension of language teaching’ Language Teaching 50 / 3

Locke, E. A. & Latham, G. P. 2006. ‘New Directions in Goal-Setting Theory’ Current Directions in Psychological Science 15 / 5: 265 – 268

McMahon, M. & Oliver, R. (2001). Promoting self-regulated learning in an on-line environment. In C. Montgomerie & J. Viteli (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2001 (pp. 1299-1305). Chesapeake, VA: AACE

Morrison, B. 2005. ‘Evaluating learning gain in a self-access learning centre’ Language Teaching Research 9 / 3: 267 – 293

Ordóñez, L. D., Schweitzer, M. E., Galinsky, A. D. & Bazerman, M. H. 2009. Goals Gone Wild: The Systematic Side Effects of Over-Prescribing Goal Setting. Harvard Business School Working Paper 09-083

Pane, J. F., Steiner, E. D., Baird, M. D. & Hamilton, L. S. 2015. Continued Progress: Promising Evidence on Personalized Learning. Seattle: Rand Corporation

Pavlenko, A. & Lantolf, J. P. 2000. ‘Second language learning as participation and the (re)construction of selves’ In J.P. Lantolf (ed.), Sociocultural Theory and Second Language Learning. Oxford: Oxford University Press, pp. 155 – 177

Reinders, H. 2012. ‘The end of self-access? From walled garden to public park’ ELT World Online 4: 1 – 5

Rivers, W. M. 1971. ‘Techniques for Developing Proficiency in the Spoken Language in an Individualized Foreign Language program’ in Altman, H.B. & Politzer, R.L. (eds.) 1971. Individualizing Foreign Language Instruction: Proceedings of the Stanford Conference, May 6 – 8, 1971. Washington, D.C.: Office of Education, U.S. Department of Health, Education, and Welfare. pp. 165 – 169

Ur, P. 1996. A Course in Language Teaching: Practice and Theory. Cambridge: Cambridge University Press

Ur, P. 2012. A Course in English Language Teaching. Cambridge: Cambridge University Press

Vandergriff, I. Second-language Discourse in the Digital World. 2016. Amsterdam: John Benjamins