Archive for July, 2019

At a recent ELT conference, a plenary presentation entitled ‘Getting it right with edtech’ (sponsored by a vendor of – increasingly digital – ELT products) began with the speaker suggesting that technology was basically neutral, that what you do with educational technology matters far more than the nature of the technology itself. The idea that technology is a ‘neutral tool’ has a long pedigree and often accompanies exhortations to embrace edtech in one form or another (see for example Fox, 2001). It is an idea that is supported by no less a luminary than Chomsky, who, in a 2012 video entitled ‘The Purpose of Education’ (Chomsky, 2012), said that:

As far as […] technology […] and education is concerned, technology is basically neutral. It’s kind of like a hammer. I mean, […] the hammer doesn’t care whether you use it to build a house or whether a torturer uses it to crush somebody’s skull; a hammer can do either. The same with the modern technology; say, the Internet, and so on.

Womans hammerAlthough hammers are not usually classic examples of educational technology, they are worthy of a short discussion. Hammers come in all shapes and sizes and when you choose one, you need to consider its head weight (usually between 16 and 20 ounces), the length of the handle, the shape of the grip, etc. Appropriate specifications for particular hammering tasks have been calculated in great detail. The data on which these specifications is based on an analysis of the hand size and upper body strength of the typical user. The typical user is a man, and the typical hammer has been designed for a man. The average male hand length is 177.9 mm, that of the average woman is 10 mm shorter (Wang & Cai, 2017). Women typically have about half the upper body strength of men (Miller et al., 1993). It’s possible, but not easy to find hammers designed for women (they are referred to as ‘Ladies hammers’ on Amazon). They have a much lighter head weight, a shorter handle length, and many come in pink or floral designs. Hammers, in other words, are far from neutral: they are highly gendered.

Moving closer to educational purposes and ways in which we might ‘get it right with edtech’, it is useful to look at the smart phone. The average size of these devices has risen in recent years, and is now 5.5 inches, with the market for 6 inch screens growing fast. Why is this an issue? Well, as Caroline Criado Perez (2019: 159) notes, ‘while we’re all admittedly impressed by the size of your screen, it’s a slightly different matter when it comes to fitting into half the population’s hands. The average man can fairly comfortably use his device one-handed – but the average woman’s hand is not much bigger than the handset itself’. This is despite the fact the fact that women are more likely to own an iPhone than men  .

It is not, of course, just technological artefacts that are gendered. Voice-recognition software is also very biased. One researcher (Tatman, 2017) has found that Google’s speech recognition tool is 13% more accurate for men than it is for women. There are also significant biases for race and social class. The reason lies in the dataset that the tool is trained on: the algorithms may be gender- and socio-culturally-neutral, but the dataset is not. It would not be difficult to redress this bias by training the tool on a different dataset.

The same bias can be found in automatic translation software. Because corpora such as the BNC or COCA have twice as many male pronouns as female ones (as a result of the kinds of text that are selected for the corpora), translation software reflects the bias. With Google Translate, a sentence in a language with a gender-neutral pronoun, such as ‘S/he is a doctor’ is rendered into English as ‘He is a doctor’. Meanwhile, ‘S/he is a nurse’ is translated as ‘She is a nurse’ (Criado Perez, 2019: 166).

Datasets, then, are often very far from neutral. Algorithms are not necessarily any more neutral than the datasets, and Cathy O’Neil’s best-seller ‘Weapons of Math Destruction’ catalogues the many, many ways in which algorithms, posing as neutral mathematical tools, can increase racial, social and gender inequalities.

It would not be hard to provide many more examples, but the selection above is probably enough. Technology, as Langdon Winner (Winner, 1980) observed almost forty years ago, is ‘deeply interwoven in the conditions of modern politics’. Technology cannot be neutral: it has politics.

So far, I have focused primarily on the non-neutrality of technology in terms of gender (and, in passing, race and class). Before returning to broader societal issues, I would like to make a relatively brief mention of another kind of non-neutrality: the pedagogic. Language learning materials necessarily contain content of some kind: texts, topics, the choice of values or role models, language examples, and so on. These cannot be value-free. In the early days of educational computer software, one researcher (Biraimah, 1993) found that it was ‘at least, if not more, biased than the printed page it may one day replace’. My own impression is that this remains true today.

Equally interesting to my mind is the fact that all educational technologies, ranging from the writing slate to the blackboard (see Buzbee, 2014), from the overhead projector to the interactive whiteboard, always privilege a particular kind of teaching (and learning). ‘Technologies are inherently biased because they are built to accomplish certain very specific goals which means that some technologies are good for some tasks while not so good for other tasks’ (Zhao et al., 2004: 25). Digital flashcards, for example, inevitably encourage a focus on rote learning. Contemporary LMSs have impressive multi-functionality (i.e. they often could be used in a very wide variety of ways), but, in practice, most teachers use them in very conservative ways (Laanpere et al., 2004). This may be a result of teacher and institutional preferences, but it is almost certainly due, at least in part, to the way that LMSs are designed. They are usually ‘based on traditional approaches to instruction dating from the nineteenth century: presentation and assessment [and] this can be seen in the selection of features which are most accessible in the interface, and easiest to use’ (Lane, 2009).

The argument that educational technology is neutral because it could be put to many different uses, good or bad, is problematic because the likelihood of one particular use is usually much greater than another. There is, however, another way of looking at technological neutrality, and that is to look at its origins. Elsewhere on this blog, in post after post, I have given examples of the ways in which educational technology has been developed, marketed and sold primarily for commercial purposes. Educational values, if indeed there are any, are often an afterthought. The research literature in this area is rich and growing: Stephen Ball, Larry Cuban, Neil Selwyn, Joel Spring, Audrey Watters, etc.

Rather than revisit old ground here, this is an opportunity to look at a slightly different origin of educational technology: the US military. The close connection of the early history of the internet and the Advanced Research Projects Agency (now DARPA) of the United States Department of Defense is fairly well-known. Much less well-known are the very close connections between the US military and educational technologies, which are catalogued in the recently reissued ‘The Classroom Arsenal’ by Douglas D. Noble.

Following the twin shocks of the Soviet Sputnik 1 (in 1957) and Yuri Gagarin (in 1961), the United States launched a massive programme of investment in the development of high-tech weaponry. This included ‘computer systems design, time-sharing, graphics displays, conversational programming languages, heuristic problem-solving, artificial intelligence, and cognitive science’ (Noble, 1991: 55), all of which are now crucial components in educational technology. But it also quickly became clear that more sophisticated weapons required much better trained operators, hence the US military’s huge (and continuing) interest in training. Early interest focused on teaching machines and programmed instruction (branches of the US military were by far the biggest purchasers of programmed instruction products). It was essential that training was effective and efficient, and this led to a wide interest in the mathematical modelling of learning and instruction.

What was then called computer-based education (CBE) was developed as a response to military needs. The first experiments in computer-based training took place at the Systems Research Laboratory of the Air Force’s RAND Corporation think tank (Noble, 1991: 73). Research and development in this area accelerated in the 1960s and 1970s and CBE (which has morphed into the platforms of today) ‘assumed particular forms because of the historical, contingent, military contexts for which and within which it was developed’ (Noble, 1991: 83). It is possible to imagine computer-based education having developed in very different directions. Between the 1960s and 1980s, for example, the PLATO (Programmed Logic for Automatic Teaching Operations) project at the University of Illinois focused heavily on computer-mediated social interaction (forums, message boards, email, chat rooms and multi-player games). PLATO was also significantly funded by a variety of US military agencies, but proved to be of much less interest to the generals than the work taking place in other laboratories. As Noble observes, ‘some technologies get developed while others do not, and those that do are shaped by particular interests and by the historical and political circumstances surrounding their development (Noble, 1991: 4).

According to Noble, however, the influence of the military reached far beyond the development of particular technologies. Alongside the investment in technologies, the military were the prime movers in a campaign to promote computer literacy in schools.

Computer literacy was an ideological campaign rather than an educational initiative – a campaign designed, at bottom, to render people ‘comfortable’ with the ‘inevitable’ new technologies. Its basic intent was to win the reluctant acquiescence of an entire population in a brave new world sculpted in silicon.

The computer campaign also succeeded in getting people in front of that screen and used to having computers around; it made people ‘computer-friendly’, just as computers were being rendered ‘used-friendly’. It also managed to distract the population, suddenly propelled by the urgency of learning about computers, from learning about other things, such as how computers were being used to erode the quality of their working lives, or why they, supposedly the citizens of a democracy, had no say in technological decisions that were determining the shape of their own futures.

Third, it made possible the successful introduction of millions of computers into schools, factories and offices, even homes, with minimal resistance. The nation’s public schools have by now spent over two billion dollars on over a million and a half computers, and this trend still shows no signs of abating. At this time, schools continue to spend one-fifth as much on computers, software, training and staffing as they do on all books and other instructional materials combined. Yet the impact of this enormous expenditure is a stockpile of often idle machines, typically used for quite unimaginative educational applications. Furthermore, the accumulated results of three decades of research on the effectiveness of computer-based instruction remain ‘inconclusive and often contradictory’. (Noble, 1991: x – xi)

Rather than being neutral in any way, it seems more reasonable to argue, along with (I think) most contemporary researchers, that edtech is profoundly value-laden because it has the potential to (i) influence certain values in students; (ii) change educational values in [various] ways; and (iii) change national values (Omotoyinbo & Omotoyinbo, 2016: 173). Most importantly, the growth in the use of educational technology has been accompanied by a change in the way that education itself is viewed: ‘as a tool, a sophisticated supply system of human cognitive resources, in the service of a computerized, technology-driven economy’ (Noble, 1991: 1). These two trends are inextricably linked.

References

Biraimah, K. 1993. The non-neutrality of educational computer software. Computers and Education 20 / 4: 283 – 290

Buzbee, L. 2014. Blackboard: A Personal History of the Classroom. Minneapolis: Graywolf Press

Chomsky, N. 2012. The Purpose of Education (video). Learning Without Frontiers Conference. https://www.youtube.com/watch?v=DdNAUJWJN08

Criado Perez, C. 2019. Invisible Women. London: Chatto & Windus

Fox, R. 2001. Technological neutrality and practice in higher education. In A. Herrmann and M. M. Kulski (Eds), Expanding Horizons in Teaching and Learning. Proceedings of the 10th Annual Teaching Learning Forum, 7-9 February 2001. Perth: Curtin University of Technology. http://clt.curtin.edu.au/events/conferences/tlf/tlf2001/fox.html

Laanpere, M., Poldoja, H. & Kikkas, K. 2004. The second thoughts about pedagogical neutrality of LMS. Proceedings of IEEE International Conference on Advanced Learning Technologies, 2004. https://ieeexplore.ieee.org/abstract/document/1357664

Lane, L. 2009. Insidious pedagogy: How course management systems impact teaching. First Monday, 14(10). https://firstmonday.org/ojs/index.php/fm/article/view/2530/2303Lane

Miller, A.E., MacDougall, J.D., Tarnopolsky, M. A. & Sale, D.G. 1993. ‘Gender differences in strength and muscle fiber characteristics’ European Journal of Applied Physiology and Occupational Physiology. 66(3): 254-62 https://www.ncbi.nlm.nih.gov/pubmed/8477683

Noble, D. D. 1991. The Classroom Arsenal. Abingdon, Oxon.: Routledge

Omotoyinbo, D. W. & Omotoyinbo, F. R. 2016. Educational Technology and Value Neutrality. Societal Studies, 8 / 2: 163 – 179 https://www3.mruni.eu/ojs/societal-studies/article/view/4652/4276

O’Neil, C. 2016. Weapons of Math Destruction. London: Penguin

Sundström, P. Interpreting the Notion that Technology is Value Neutral. Medicine, Health Care and Philosophy 1, 1998: 42-44

Tatman, R. 2017. ‘Gender and Dialect Bias in YouTube’s Automatic Captions’ Proceedings of the First Workshop on Ethics in Natural Language Processing, pp. 53–59 http://www.ethicsinnlp.org/workshop/pdf/EthNLP06.pdf

Wang, C. & Cai, D. 2017. ‘Hand tool handle design based on hand measurements’ MATEC Web of Conferences 119, 01044 (2017) https://www.matec-conferences.org/articles/matecconf/pdf/2017/33/matecconf_imeti2017_01044.pdf

Winner, L. 1980. Do Artifacts have Politics? Daedalus 109 / 1: 121 – 136

Zhao, Y, Alvarez-Torres, M. J., Smith, B. & Tan, H. S. 2004. The Non-neutrality of Technology: a Theoretical Analysis and Empirical Study of Computer Mediated Communication Technologies. Journal of Educational Computing Research 30 (1 &2): 23 – 55

When the startup, AltSchool, was founded in 2013 by Max Ventilla, the former head of personalization at Google, it quickly drew the attention of venture capitalists and within a few years had raised $174 million from the likes of the Zuckerberg Foundation, Peter Thiel, Laurene Powell Jobs and Pierre Omidyar. It garnered gushing articles in a fawning edtech press which enthused about ‘how successful students can be when they learn in small, personalized communities that champion project-based learning, guided by educators who get a say in the technology they use’. It promised ‘a personalized learning approach that would far surpass the standardized education most kids receive’.

altschoolVentilla was an impressive money-raiser who used, and appeared to believe, every cliché in the edTech sales manual. Dressed in regulation jeans, polo shirt and fleece, he claimed that schools in America were ‘stuck in an industrial-age model, [which] has been in steady decline for the last century’ . What he offered, instead, was a learner-centred, project-based curriculum providing real-world lessons. There was a focus on social-emotional learning activities and critical thinking was vital.

The key to the approach was technology. From the start, software developers, engineers and researchers worked alongside teachers everyday, ‘constantly tweaking the Personalized Learning Plan, which shows students their assignments for each day and helps teachers keep track of and assess student’s learning’. There were tablets for pre-schoolers, laptops for older kids and wall-mounted cameras to record the lessons. There were, of course, Khan Academy videos. Ventilla explained that “we start with a representation of each child”, and even though “the vast majority of the learning should happen non-digitally”, the child’s habits and preferences gets converted into data, “a digital representation of the important things that relate to that child’s learning, not just their academic learning but also their non-academic learning. Everything logistic that goes into setting up the experience for them, whether it’s who has permission to pick them up or their allergy information. You name it.” And just like Netflix matches us to TV shows, “If you have that accurate and actionable representation for each child, now you can start to personalize the whole experience for that child. You can create that kind of loop you described where because we can represent a child well, we can match them to the right experiences.”

AltSchool seemed to offer the possibility of doing something noble, of transforming education, ‘bringing it into the digital age’, and, at the same time, a healthy return on investors’ money. Expanding rapidly, nine AltSchool microschools were opened in New York and the Bay Area, and plans were afoot for further expansion in Chicago. But, by then, it was already clear that something was going wrong. Five of the schools were closed before they had really got started and the attrition rate in some classrooms had reached about 30%. Revenue in 2018 was only $7 million and there were few buyers for the AltSchool platform. Quoting once more from the edTech bible, Ventilla explained the situation: ‘Our whole strategy is to spend more than we make,’ he says. Since software is expensive to develop and cheap to distribute, the losses, he believes, will turn into steep profits once AltSchool refines its product and lands enough customers.

The problems were many and apparent. Some of the buildings were simply not appropriate for schools, with no playgrounds or gyms, malfunctioning toilets, among other issues. Parents were becoming unhappy and accused AltSchool of putting ‘its ambitions as a tech company above its responsibility to teach their children. […] We kind of came to the conclusion that, really, AltSchool as a school was kind of a front for what Max really wants to do, which is develop software that he’s selling,’ a parent of a former AltSchool student told Business Insider. ‘We had really mediocre educators using technology as a crutch,’ said one father who transferred his child to a different private school after two years at AltSchool. […] We learned that it’s almost impossible to really customize the learning experience for each kid.’ Some parents began to wonder whether AltSchool had enticed families into its program merely to extract data from their children, then toss them aside?

With the benefit of hindsight, it would seem that the accusations were hardly unfair. In June of this year, AltSchool announced that its four remaining schools would be operated by a new partner, Higher Ground Education (a well-funded startup founded in 2016 which promotes and ‘modernises’ Montessori education). Meanwhile, AltSchool has been rebranded as Altitude Learning, focusing its ‘resources on the development and expansion of its personalized learning platform’ for licensing to other schools across the country.

Quoting once more from the edTech sales manual, Ventilla has said that education should drive the tech, not the other way round. Not so many years earlier, before starting AltSchool, Ventilla also said that he had read two dozen books on education and emerged a fan of Sir Ken Robinson. He had no experience as a teacher or as an educational administrator. Instead, he had ‘extensive knowledge of networks, and he understood the kinds of insights that can be gleaned from big data’.