Archive for the ‘vocabulary’ Category

Vocab Victor is a very curious vocab app. It’s not a flashcard system, designed to extend vocabulary breadth. Rather it tests the depth of a user’s vocabulary knowledge.

The app’s website refers to the work of Paul Meara (see, for example, Meara, P. 2009. Connected Words. Amsterdam: John Benjamins). Meara explored the ways in which an analysis of the words that we associate with other words can shed light on the organisation of our mental lexicon. Described as ‘gigantic multidimensional cobwebs’ (Aitchison, J. 1987. Words in the Mind. Oxford: Blackwell, p.86), our mental lexicons do not appear to store lexical items in individual slots, but rather they are distributed across networks of associations.

The size of the web (i.e. the number of words, or the level of vocabulary breadth) is important, but equally important is the strength of the connections within the web (or vocabulary depth), as this determines the robustness of vocabulary knowledge. These connections or associations are between different words and concepts and experiences, and they are developed by repeated, meaningful, contextualised exposure to a word. In other words, the connections are firmed up through extensive opportunities to use language.

In word association research, a person is given a prompt word and asked to say the first other word that comes to their mind. For an entertaining example of this process at work, you might enjoy this clip from the comedy show ‘Help’. The research has implications for a wide range of questions, not least second language acquisition. For example, given a particular prompt, native speakers produce a relatively small number of associative responses, and these are reasonably predictable. Learners, on the other hand, typically produce a much greater variety of responses (which might seem surprising, given that they have a smaller vocabulary store to select from).

One way of classifying the different kinds of response is to divide them into two categories: syntagmatic (words that are discoursally connected to the prompt, such as collocations) and paradigmatic (words that are semantically close to the prompt and are the same part of speech). Linguists have noted that learners (both L1 children and L2 learners) show a shift from predominantly syntagmatic responses to more paradigmatic responses as their mental lexicon develops.

The developers of Vocab Victor have set out to build ‘more and stronger associations for the words your students already know, and teaches new words by associating them with existing, known words, helping students acquire native-like word networks. Furthermore, Victor teaches different types of knowledge, including synonyms, “type-of” relationships, collocations, derivations, multiple meanings and form-focused knowledge’. Since we know how important vocabulary depth is, this seems like a pretty sensible learning target.

The app attempts to develop this breadth in two main ways (see below). The ‘core game’ is called ‘Word Strike’ where learners have to pick the word on the arrow which most closely matches the word on the target. The second is called ‘Word Drop’ where a bird holds a word card and the user has to decide if it relates more to one of two other words below. Significantly, they carry out these tasks before any kind of association between form and meaning has been established. The meaning of unknown items can be checked in a monolingual dictionary later. There are a couple of other, less important games that I won’t describe now. The graphics are attractive, if a little juvenile. The whole thing is gamified with levels, leaderboards and so on. It’s free and, presumably, still under development.

Word strike backsideBird drop certain

The app claims to be for ‘English language learners of all ages [to] develop a more native-like vocabulary’. It also says that it is appropriate for ‘native speaking primary students [to] build and strengthen vocabulary for better test performance and stronger reading skills’, as well as ‘secondary students [to] prepare for the PSAT and SAT’. It was the scope of these claims that first set my alarm bells ringing. How could one app be appropriate for such diverse users? (Spoiler: it can’t, and attempts to make an edtech product suitable for everyone inevitably end up with a product that is suitable for no one.)

Rich, associative lexical networks are the result of successful vocabulary acquisition, but neither Paul Meara nor anyone else in the word association field has, to the best of my knowledge, ever suggested that deliberate study is the way to develop the networks. It is uncontentious to say that vocabulary depth (as shown by associative networks) is best developed through extensive exposure to input – reading and listening.

It is also reasonably uncontentious to say that deliberate study of vocabulary pays greatest dividends in developing vocabulary breadth (not depth), especially at lower levels, with a focus on the top three to eight thousand words in terms of frequency. It may also be useful at higher levels when a learner needs to acquire a limited number of new words for a particular purpose. An example of this would be someone who is going to study in an EMI context and would benefit from rapid learning of the words of the Academic Word List.

The Vocab Victor website says that the app ‘is uniquely focused on intermediate-level vocabulary. The app helps get students beyond this plateau by selecting intermediate-level vocabulary words for your students’. At B1 and B2 levels, learners typically know words that fall between #2500 and #3750 in the frequency tables. At level C2, they know most of the most frequent 5000 items. The less frequent a word is, the less point there is in studying it deliberately.

For deliberate study of vocabulary to serve any useful function, the target language needs to be carefully selected, with a focus on high-frequency items. It makes little sense to study words that will already be very familiar. And it makes no sense to deliberately study apparently random words that are so infrequent (i.e. outside the top 10,000) that it is unlikely they will be encountered again before the deliberate study has been forgotten. Take a look at the examples below and judge for yourself how well chosen the items are.

Year etcsmashed etc

Vocab Victor appears to focus primarily on semantic fields, as in the example above with ‘smashed’ as a key word. ‘Smashed’, ‘fractured’, ‘shattered’ and ‘cracked’ are all very close in meaning. In order to disambiguate them, it would help learners to see which nouns typically collocate with these words. But they don’t get this with the app – all they get are English-language definitions from Merriam-Webster. What this means is that learners are (1) unlikely to develop a sufficient understanding of target items to allow them to incorporate them into their productive lexicon, and (2) likely to get completely confused with a huge number of similar, low-frequency words (that weren’t really appropriate for deliberate study in the first place). What’s more, lexical sets of this kind may not be a terribly good idea, anyway (see my blog post on the topic).

Vocab Victor takes words, as opposed to lexical items, as the target learning objects. Users may be tested on the associations of any of the meanings of polysemantic items. In the example below (not perhaps the most appropriate choice for primary students!), there are two main meanings, but with other items, things get decidedly more complex (see the example with ‘toss’). Learners are also asked to do the associative tasks ‘Word Strike’ and ‘Word Drop’ before they have had a chance to check the possible meanings of either the prompt item or the associative options.

Stripper definitionStripper taskToss definition

How anyone could learn from any of this is quite beyond me. I often struggled to choose the correct answer myself; there were also a small number of items whose meaning I wasn’t sure of. I could see no clear way in which items were being recycled (there’s no spaced repetition here). The website claims that ‘adaptating [sic] to your student’s level happens automatically from the very first game’, but I could not see this happening. In fact, it’s very hard to adapt target item selection to an individual learner, since right / wrong or multiple choice answers tell us so little. Does a correct answer tell us that someone knows an item or just that they made a lucky guess? Does an incorrect answer tell us that an item is unknown or just that, under game pressure, someone tapped the wrong button? And how do you evaluate a learner’s lexical level (as a starting point),  even with very rough approximation,  without testing knowledge of at least thirty items first? All in all, then, a very curious app.

One of the most powerful associative responses to a word (especially with younger learners) is what is called a ‘klang’ response: another word which rhymes with or sounds like the prompt word. So, if someone says the word ‘app’ to you, what’s the first klang response that comes to mind?

In my last post , I looked at the use of digital dictionaries. This post is a sort of companion piece to that one.

I noted in that post that teachers are typically less keen on bilingual dictionaries (preferring monolingual versions) than their students. More generally, it seems that teachers are less keen on any kind of dictionary, preferring their students to attempt to work out the meaning of unknown words from context. Coursebooks invariably promote the skill of guessing meaning from context (also known as ‘lexical inferencing’) and some suggest that dictionary work should be banned from the classroom (Haynes & Baker, 1993, cited in Folse, 2004: 112). Teacher educators usually follow suit. Scott Thornbury, for example, has described guessing from context as ‘probably one of the most useful skills learners can acquire and apply both inside and outside the classroom’ (Thornbury, 2002: 148) and offers a series of steps to train learners in this skill before adding ‘when all else fails, consult a dictionary’. Dictionary use, then, is a last resort.

These steps are fairly well known and a typical example (from Clarke & Nation, 1980, cited in Webb & Nation, 2017: 169) is

1 Determine the part of speech of the unknown word

2 Analyse the immediate context to try to determine the meaning of the unknown word

3 Analyse the wider context to try to determine the meaning of the unknown word

4 Guess the meaning of the unknown word

5 Check the guess against the information that was found in the first four steps

It has been suggested that training in the use of this skill should be started at low levels, so that learners have a general strategy for dealing with unknown words. As proficiency develops, more specific instruction in the recognition and interpretation of context clues can be provided (Walters, 2006: 188). Training may include a demonstration by the teacher using a marked-up text, perhaps followed by ‘think-aloud’ sessions, where learners say out loud the step-by-step process they are going through when inferring meaning. It may also include a progression from, first, cloze exercises to, second, texts where highlighted words are provided with multiple choice definitions to, finally, texts with no support.

Although research has not established what kind of training is likely to be most effective, or whether specific training is more valuable than the provision of lots of opportunities to practise the skill, it would seem that this kind of work is likely to lead to gains in reading comprehension.

Besides the obvious value of this skill in helping learners to decode the meaning of unknown items in a text, it has been hypothesized that learners are ‘more likely to remember the form and meaning of a word when they have inferred its meaning by themselves than when the meaning has been given to them’ (Hulstijn, 1992). This is because memorisation is likely to be enhanced when mental effort has been exercised. The hypothesis was confirmed by Hulstijn in his 1992 study.

Unfortunately, Hulstijn’s study is not, in itself, sufficient evidence to prove the hypothesis. Other studies have shown the opposite. Keith Folse (2004: 112) cites a study by Knight (1994) which ‘found that subjects who used a bilingual dictionary while reading a passage not only learned more words but also achieved higher reading comprehension scores than subjects who did not have a dictionary and therefore had to rely on guessing from context clues’. More recently, Mokhtar & Rawian (2012) entitled their paper ‘Guessing Word Meaning from Context Has Its Limit: Why?’ They argue that ‘though it is not impossible for ESL learners to derive vocabulary meanings from context, guessing strategy by itself does not foster retention of meanings’.

What, then, are the issues here?

  • First of all, Liu and Nation (1985) have estimated that learners ought to know at least 95 per cent of the context words in order to be able to infer meaning from context. Whilst this figure may not be totally accurate, it is clear that because ‘the more words you know, the more you are able to acquire new words’ (Prince, 1996), guessing from context is likely to work better with students at higher levels of proficiency than those with a lower level.
  • Although exercises in coursebooks which require students to guess meaning from context have usually been written in such a way that it is actually possible to do so, ‘such a nicely packaged contextual environment is rare’ in the real world (Folse, 2004: 115). The skill of guessing from context may not be as useful as was previously assumed.
  • There is clearly a risk that learners will guess wrong and, therefore, learn the wrong meaning. Nassaji (2003: 664) found in one study that learners guessed wrong more than half the time.
  • Lastly, it appears that many learners do not like to employ this strategy, believing that using a dictionary is more useful to them and, possibly as a result of this attitude, fail to devote sufficient mental effort to it (Prince, 1996: 480).

Perhaps the most forceful critique of the promotion of guessing meaning from context has come from Catherine Walter and Michael Swan (2009), who referred to it as ‘an alleged ‘skill’’ and considered it, along with skimming and scanning, to be ‘mostly a waste of time’. Scott Thornbury (2006), in a marked departure from his comments (from a number of years earlier) quoted at the start of this post, also questioned the relevance of ‘guessing from context’ activities, arguing that, if students can employ a strategy such as inferring when reading their own language, they can transfer it to another language … so teachers are at risk of teaching their students what they already know.

To summarize, then, we might say that (1) the skill of guessing from context may not be as helpful in the real world as previously imagined, (2) it may not be as useful in acquiring vocabulary items as previously imagined. When a teacher is asked by a student for the meaning of a word in a text, the reflex response of ‘try to work it out from the context’ may also not be as helpful as previously imagined. Translations and / or dictionary advice may well, at times, be more appropriate.

References

Clarke, D.F. & Nation, I.S.P. 1980. ‘Guessing the meanings of words from context: Strategy and techniques.’ System, 8 (3): 211 -220

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Haynes, M. & Baker, I. 1993. ‘American and Chinese readers learning from lexical familiarization in English texts.’ In Huckin, T., Haynes, M. & Coady, J. (Eds.) Second Language Reading and Vocabulary Acquisition. Norwood, NJ.: Ablex. pp. 130 – 152

Hulstijn, J. 1992. ‘Retention of inferred and given word meanings: experiments in incidental vocabulary learning.’ In Arnaud, P. & Bejoint, H. (Eds.) Vocabulary and Applied Linguistics. London: Macmillan Academic and Professional Limited, pp. 113 – 125

Liu, N. & Nation, I. S. P. 1985. ‘Factors affecting guessing vocabulary in context.’ RELC Journal 16 (1): 33–42

Mokhtar, A. A. & Rawian, R. M. 2012. ‘Guessing Word Meaning from Context Has Its Limit: Why?’ International Journal of Linguistics 4 (2): 288 – 305

Nassaji, H. 2003. ‘L2 vocabulary learning from context: Strategies, knowledge sources, and their relationship with success in L2 lexical inferencing.’ TESOL Quarterly, 37(4): 645-670

Prince, P. 1996. ‘Second Language vocabulary Learning: The Role of Context versus Translations as a Function of Proficiency.’ The Modern Language Journal, 80(4): 478-493

Thornbury, S. 2002. How to Teach Vocabulary. Harlow: Pearson Education

Thornbury, S. 2006. The End of Reading? One Stop English,

Walter, C. & Swan, M. 2009. ‘Teaching reading skills: mostly a waste of time?’ In Beaven B. (Ed.) IATEFL 2008 Exeter Conference Selections. Canterbury: IATEFL, pp. 70-71

Walters, J.M. 2004. ‘Teaching the use of context to infer meaning: A longitudinal survey of L1 and L2 vocabulary research.’ Language Teaching, 37(4), pp. 243-252

Walters, J.D. 2006. ‘Methods of teaching inferring meaning from context.’ RELC Journal, 37(2), pp. 176-190

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

 

The most widely-used and popular tool for language learners is the bilingual dictionary (Levy & Steel, 2015), and the first of its kind appeared about 4,000 years ago (2,000 years earlier than the first monolingual dictionaries), offering wordlists in Sumerian and Akkadian (Wheeler, 2013: 9 -11). Technology has come a long way since the clay tablets of the Bronze Age. Good online dictionaries now contain substantially more information (in particular audio recordings) than their print equivalents of a few decades ago. In addition, they are usually quicker and easier to use, more popular, and lead to retention rates that are comparable to, or better than, those achieved with print (Töpel, 2014). The future of dictionaries is likely to be digital, and paper dictionaries may well disappear before very long (Granger, 2012: 2).

English language learners are better served than learners of other languages, and the number of free, online bilingual dictionaries is now enormous. Speakers of less widely-spoken languages may still struggle to find a good quality service, but speakers of, for example, Polish (with approximately 40 million speakers, and a ranking of #33 in the list of the world’s most widely spoken languages) will find over twenty free, online dictionaries to choose from (Lew & Szarowska, 2017). Speakers of languages that are more widely spoken (Chinese, Spanish or Portuguese, for example) will usually find an even greater range. The choice can be bewildering and neither search engine results nor rankings from app stores can be relied on to suggest the product of the highest quality.

Language teachers are not always as enthusiastic about bilingual dictionaries as their learners. Folse (2004: 114 – 120) reports on an informal survey of English teachers which indicated that 11% did not allow any dictionaries in class at all, 37% allowed monolingual dictionaries and only 5% allowed bilingual dictionaries. Other researchers (e.g. Boonmoh & Nesi, 2008), have found a similar situation, with teachers overwhelmingly recommending the use of a monolingual learner’s dictionary: almost all of their students bought one, but the great majority hardly ever used it, preferring instead a digital bilingual version.

Teachers’ preferences for monolingual dictionaries are usually motivated in part by a fear that their students will become too reliant on translation. Whilst this concern remains widespread, much recent suggests that this fear is misguided (Nation, 2013: 424) and that monolingual dictionaries do not actually lead to greater learning gains than their bilingual counterparts. This is, in part, due to the fact that learners typically use these dictionaries in very limited ways – to see if a word exists, check spelling or look up meaning (Harvey & Yuill, 1997). If they made fuller use of the information (about frequency, collocations, syntactic patterns, etc.) on offer, it is likely that learning gains would be greater: ‘it is accessing multiplicity of information that is likely to enhance retention’ (Laufer & Hill, 2000: 77). Without training, however, this is rarely the case.  With lower-level learners, a monolingual learner’s dictionary (even one designed for Elementary level students) can be a frustrating experience, because until they have reached a vocabulary size of around 2,000 – 3,000 words, they will struggle to understand the definitions (Webb & Nation, 2017: 119).

The second reason for teachers’ preference for monolingual dictionaries is that the quality of many bilingual dictionaries is undoubtedly very poor, compared to monolingual learner’s dictionaries such as those produced by Oxford University Press, Cambridge University Press, Longman Pearson, Collins Cobuild, Merriam-Webster and Macmillan, among others. The situation has changed, however, with the rapid growth of bilingualized dictionaries. These contain all the features of a monolingual learner’s dictionary, but also include translations into the learner’s own language. Because of the wealth of information provided by a good bilingualized dictionary, researchers (e.g. Laufer & Hadar, 1997; Chen, 2011) generally consider them preferable to monolingual or normal bilingual dictionaries. They are also popular with learners. Good bilingualized online dictionaries (such as the Oxford Advanced Learner’s English-Chinese Dictionary) are not always free, but many are, and with some language pairings free software can be of a higher quality than services that incur a subscription charge.

If a good bilingualized dictionary is available, there is no longer any compelling reason to use a monolingual learner’s dictionary, unless it contains features which cannot be found elsewhere. In order to compete in a crowded marketplace, many of the established monolingual learner’s dictionaries do precisely that. Examples of good, free online dictionaries include:

Students need help in selecting a dictionary that is right for them. Without this, many end up using as a dictionary a tool such as Google Translate , which, for all its value, is of very limited use as a dictionary. They need to understand that the most appropriate dictionary will depend on what they want to use it for (receptive, reading purposes or productive, writing purposes). Teachers can help in this decision-making process by addressing the issue in class (see the activity below).

In addition to the problem of selecting an appropriate dictionary, it appears that many learners have inadequate dictionary skills (Niitemaa & Pietilä, 2018). In one experiment (Tono, 2011), only one third of the vocabulary searches in a dictionary that were carried out by learners resulted in success. The reasons for failure include focussing on only the first meaning (or translation) of a word that is provided, difficulty in finding the relevant information in long word entries, an inability to find the lemma that is needed, and spelling errors (when they had to type in the word) (Töpel, 2014). As with monolingual dictionaries, learners often only check the meaning of a word in a bilingual dictionary and fail to explore the wider range of information (e.g. collocation, grammatical patterns, example sentences, synonyms) that is available (Laufer & Kimmel, 1997; Laufer & Hill, 2000; Chen, 2010). This information is both useful and may lead to improved retention.

Most learners receive no training in dictionary skills, but would clearly benefit from it. Nation (2013: 333) suggests that at least four or five hours, spread out over a few weeks, would be appropriate. He suggests (ibid: 419 – 421) that training should encourage learners, first, to look closely at the context in which an unknown word is encountered (in order to identify the part of speech, the lemma that needs to be looked up, its possible meaning and to decide whether it is worth looking up at all), then to help learners in finding the relevant entry or sub-entry (by providing information about common dictionary abbreviations (e.g. for parts of speech, style and register)), and, finally, to check this information against the original context.

Two good resource books full of practical activities for dictionary training are available: ‘Dictionary Activities’ by Cindy Leaney (Cambridge: Cambridge University Press, 2007) and ‘Dictionaries’ by Jon Wright (Oxford: Oxford University Press, 1998). Many of the good monolingual dictionaries offer activity guides to promote effective dictionary use and I have suggested a few activities here.

Activity: Understanding a dictionary

Outline: Students explore the use of different symbols in good online dictionaries.

Level: All levels, but not appropriate for very young learners. The activity ‘Choosing a dictionary’ is a good follow-up to this activity.

1 Distribute the worksheet and ask students to follow the instructions.

act_1

2 Check the answers.

Act_1_key

Activity: Choosing a dictionary

Outline: Students explore and evaluate the features of different free, online bilingual dictionaries.

Level: All levels, but not appropriate for very young learners. The text in stage 3 is appropriate for use with levels A2 and B1. For some groups of learners, you may want to adapt (or even translate) the list of features. It may be useful to do the activity ‘Understanding a dictionary’ before this activity.

1 Ask the class which free, online bilingual dictionaries they like to use. Write some of their suggestions on the board.

2 Distribute the list of features. Ask students to work individually and tick the boxes that are important for them. Ask students to work with a partner to compare their answers.

Act_2

3 Give students a list of free, online bilingual (English and the students’ own language) dictionaries. You can use suggestions from the list below, add the suggestions that your students made in stage 1, or add your own ideas. (For many language pairings, better resources are available than those in the list below.) Give the students the following short text and ask the students to use two of these dictionaries to look up the underlined words. Ask the students to decide which dictionary they found most useful and / or easiest to use.

act_2_text

dict_list

4 Conduct feedback with the whole class.

Activity: Getting more out of a dictionary

Outline: Students use a dictionary to help them to correct a text

Level: Levels B1 and B2, but not appropriate for very young learners. For higher levels, a more complex text (with less obvious errors) would be appropriate.

1 Distribute the worksheet below and ask students to follow the instructions.

act_3

2 Check answers with the whole class. Ask how easy it was to find the information in the dictionary that they were using.

Key

When you are reading, you probably only need a dictionary when you don’t know the meaning of a word and you want to look it up. For this, a simple bilingual dictionary is good enough. But when you are writing or editing your writing, you will need something that gives you more information about a word: grammatical patterns, collocations (the words that usually go with other words), how formal the word is, and so on. For this, you will need a better dictionary. Many of the better dictionaries are monolingual (see the box), but there are also some good bilingual ones.

Use one (or more) of the online dictionaries in the box (or a good bilingual dictionary) and make corrections to this text. There are eleven mistakes (they have been underlined) in total.

References

Boonmoh, A. & Nesi, H. 2008. ‘A survey of dictionary use by Thai university staff and students with special reference to pocket electronic dictionaries’ Horizontes de Linguística Aplicada , 6(2), 79 – 90

Chen, Y. 2011. ‘Studies on Bilingualized Dictionaries: The User Perspective’. International Journal of Lexicography, 24 (2): 161–197

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Granger, S. 2012. Electronic Lexicography. Oxford: Oxford University Press

Harvey, K. & Yuill, D. 1997. ‘A study of the use of a monolingual pedagogical dictionary by learners of English engaged in writing’ Applied Linguistics, 51 (1): 253 – 78

Laufer, B. & Hadar, L. 1997. ‘Assessing the effectiveness of monolingual, bilingual and ‘bilingualized’ dictionaries in the comprehension and production of new words’. Modern Language Journal, 81 (2): 189 – 96

Laufer, B. & M. Hill 2000. ‘What lexical information do L2 learners select in a CALL dictionary and how does it affect word retention?’ Language Learning & Technology 3 (2): 58–76

Laufer, B. & Kimmel, M. 1997. ‘Bilingualised dictionaries: How learners really use them’, System, 25 (3): 361 -369

Leaney, C. 2007. Dictionary Activities. Cambridge: Cambridge University Press

Levy, M. and Steel, C. 2015. ‘Language learner perspectives on the functionality and use of electronic language dictionaries’. ReCALL, 27(2): 177–196

Lew, R. & Szarowska, A. 2017. ‘Evaluating online bilingual dictionaries: The case of popular free English-Polish dictionaries’ ReCALL 29(2): 138–159

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Niitemaa, M.-L. & Pietilä, P. 2018. ‘Vocabulary Skills and Online Dictionaries: A Study on EFL Learners’ Receptive Vocabulary Knowledge and Success in Searching Electronic Sources for Information’, Journal of Language Teaching and Research, 9 (3): 453-462

Tono, Y. 2011. ‘Application of eye-tracking in EFL learners’ dictionary look-up process research’, International Journal of Lexicography 24 (1): 124–153

Töpel, A. 2014. ‘Review of research into the use of electronic dictionaries’ in Müller-Spitzer, C. (Ed.) 2014. Using Online Dictionaries. Berlin: De Gruyter, pp. 13 – 54

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

Wheeler, G. 2013. Language Teaching through the Ages. New York: Routledge

Wright, J. 1998. Dictionaries. Oxford: Oxford University Press

There has been wide agreement for a long time that one of the most important ways of building the mental lexicon is by having extended exposure to language input through reading and listening. Some researchers (e.g. Krashen, 2008) have gone as far as to say that direct vocabulary instruction serves little purpose, as there is no interface between explicit and implicit knowledge. This remains, however, a minority position, with a majority of researchers agreeing with Barcroft (2015) that deliberate learning plays an important role, even if it is only ‘one step towards knowing the word’ (Nation, 2013: 46).

There is even more agreement when it comes to the differences between deliberate study and extended exposure to language input, in terms of the kinds of learning that takes place. Whilst basic knowledge of lexical items (the pairings of meaning and form) may be developed through deliberate learning (e.g. flash cards), it is suggested that ‘the more ‘contextualized’ aspects of vocabulary (e.g. collocation) cannot be easily taught explicitly and are best learned implicitly through extensive exposure to the use of words in context’ (Schmitt, 2008: 333). In other words, deliberate study may develop lexical breadth, but, for lexical depth, reading and listening are the way to go.

This raises the question of how many times a learner would need to encounter a word (in reading or listening) in order to learn its meaning. Learners may well be developing other aspects of word knowledge at the same time, of course, but a precondition for this is probably that the form-meaning relationship is sorted out. Laufer and Nation (2012: 167) report that ‘researchers seem to agree that with ten exposures, there is some chance of recognizing the meaning of a new word later on’. I’ve always found this figure interesting, but strangely unsatisfactory, unsure of what, precisely, it was actually telling me. Now, with the recent publication of a meta-analysis looking at the effects of repetition on incidental vocabulary learning (Uchihara, Webb & Yanagisawa, 2019), things are becoming a little clearer.

First of all, the number ten is a ballpark figure, rather than a scientifically proven statistic. In their literature review, Uchihara et al. report that ‘the number of encounters necessary to learn words rang[es] from 6, 10, 12, to more than 20 times. That is to say, ‘the number of encounters necessary for learning of vocabulary to occur during meaning-focussed input remains unclear’. If you ask a question to which there is a great variety of answers, there is a strong probability that there is something wrong with the question. That, it would appear, is the case here.

Unsurprisingly, there is, at least, a correlation between repeated encounters of a word and learning, described by Uchihara et al as statistically significant (with a medium effect size). More interesting are the findings about the variables in the studies that were looked at. These included ‘learner variables’ (age and the current size of the learner’s lexicon), ‘treatment variables’ (the amount of spacing between the encounters, listening versus reading, the presence or absence of visual aids, the degree to which learners ‘engage’ with the words they encounter) and ‘methodological variables’ in the design of the research (the kinds of words that are being looked at, word characteristics, the use of non-words, the test format and whether or not learners were told that they were going to be tested).

Here is a selection of the findings:

  • Older learners tend to benefit more from repeated encounters than younger learners.
  • Learners with a smaller vocabulary size tend to benefit more from repeated encounters with L2 words, but this correlation was not statistically significant. ‘Beyond a certain point in vocabulary growth, learners may be able to acquire L2 words in fewer encounters and need not receive as many encounters as learners with smaller vocabulary size’.
  • Learners made greater gains when the repeated exposure took place under massed conditions (e.g. on the same day), rather than under ‘spaced conditions’ (spread out over a longer period of time).
  • Repeated exposure during reading and, to a slightly lesser extent, listening resulted in more gains than reading while listening and viewing.
  • ‘Learners presented with visual information during meaning-focused tasks benefited less from repeated encounters than those who had no access to the information’. This does not mean that visual support is counter-productive: only that the positive effect of repeated encounters is not enhanced by visual support.
  • ‘A significantly larger effect was found for treatments involving no engagement compared to treatment involving engagement’. Again, this does not mean that ‘no engagement’ is better than ‘engagement’: only that the positive effect of repeated encounters is not enhanced by ‘engagement’.
  • ‘The frequency-learning correlation does not seem to increase beyond a range of around 20 encounters with a word’.
  • Experiments using non-words may exaggerate the effect of frequent encounters (i.e. in the real world, with real words, the learning potential of repeated encounters may be less than indicated by some research).
  • Forewarning learners of an upcoming comprehension test had a positive impact on gains in vocabulary learning. Again, this does not mean that teachers should systematically test their students’ comprehension of what they have read.

For me, the most interesting finding was that ‘about 11% of the variance in word learning through meaning-focused input was explained by frequency of encounters’. This means, quite simply, that a wide range of other factors, beyond repeated encounters, will determine the likelihood of learners acquiring vocabulary items from extensive reading and listening. The frequency of word encounters is just one factor among many.

I’m still not sure what the takeaways from this meta-analysis should be, besides the fact that it’s all rather complex. The research does not, in any way, undermine the importance of massive exposure to meaning-focussed input in learning a language. But I will be much more circumspect in my teacher training work about making specific claims concerning the number of times that words need to be encountered before they are ‘learnt’. And I will be even more sceptical about claims for the effectiveness of certain online language learning programs which use algorithms to ensure that words reappear a certain number of times in written, audio and video texts that are presented to learners.

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Laufer, B. & Nation, I.S.P. 2012. Vocabulary. In Gass, S.M. & Mackey, A. (Eds.) The Routledge Handbook of Second Language Acquisition (pp.163 – 176). Abingdon, Oxon.: Routledge

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Krashen, S. 2008. The comprehension hypothesis extended. In T. Piske & M. Young-Scholten (Eds.), Input Matters in SLA (pp.81 – 94). Bristol, UK: Multilingual Matters

Schmitt, N. 2008. Review article: instructed second language vocabulary learning. Language Teaching Research 12 (3): 329 – 363

Uchihara, T., Webb, S. & Yanagisawa, A. 2019. The Effects of Repetition on Incidental Vocabulary Learning: A Meta-Analysis of Correlational Studies. Language Learning, 69 (3): 559 – 599) Available online: https://www.researchgate.net/publication/330774796_The_Effects_of_Repetition_on_Incidental_Vocabulary_Learning_A_Meta-Analysis_of_Correlational_Studies

Digital flashcard systems like Memrise and Quizlet remain among the most popular language learning apps. Their focus is on the deliberate learning of vocabulary, an approach described by Paul Nation (Nation, 2005) as ‘one of the least efficient ways of developing learners’ vocabulary knowledge but nonetheless […] an important part of a well-balanced vocabulary programme’. The deliberate teaching of vocabulary also features prominently in most platform-based language courses.

For both vocabulary apps and bigger courses, the lexical items need to be organised into sets for the purposes of both presentation and practice. A common way of doing this, especially at lower levels, is to group the items into semantic clusters (sets with a classifying superordinate, like body part, and a collection of example hyponyms, like arm, leg, head, chest, etc.).

The problem, as Keith Folse puts it, is that such clusters ‘are not only unhelpful, they actually hinder vocabulary retention’ (Folse, 2004: 52). Evidence for this claim may be found in Higa (1963), Tinkham (1993, 1997), Waring (1997), Erten & Tekin (2008) and Barcroft (2015), to cite just some of the more well-known studies. The results, says Folse, ‘are clear and, I think, very conclusive’. The explanation that is usually given draws on interference theory: semantic similarity may lead to confusion (e.g. when learners mix up days of the week, colour words or adjectives to describe personality).

It appears, then, to be long past time to get rid of semantic clusters in language teaching. Well … not so fast. First of all, although most of the research sides with Folse, not all of it does. Nakata and Suzuki (2019) in their survey of more recent research found that results were more mixed. They found one study which suggested that there was no significant difference in learning outcomes between presenting words in semantic clusters and semantically unrelated groups (Ishii, 2015). And they found four studies (Hashemi & Gowdasiaei, 2005; Hoshino, 2010; Schneider, Healy, & Bourne, 1998, 2002) where semantic clusters had a positive effect on learning.

Nakata and Suzuki (2019) offer three reasons why semantic clustering might facilitate vocabulary learning: it (1) ‘reflects how vocabulary is stored in the mental lexicon, (2) introduces desirable difficulty, and (3) leads to extra attention, effort, or engagement from learners’. Finkbeiner and Nicol (2003) make a similar point: ‘although learning semantically related words appears to take longer, it is possible that words learned under these conditions are learned better for the purpose of actual language use (e.g., the retrieval of vocabulary during production and comprehension). That is, the very difficulty associated with learning the new labels may make them easier to process once they are learned’. Both pairs of researcher cited in this paragraph conclude that semantic clusters are best avoided, but their discussion of the possible benefits of this clustering is a recognition that the research (for reasons which I will come on to) cannot lead to categorical conclusions.

The problem, as so often with pedagogical research, is the gap between research conditions and real-world classrooms. Before looking at this in a little more detail, one relatively uncontentious observation can be made. Even those scholars who advise against semantic clustering (e.g. Papathanasiou, 2009), acknowledge that the situation is complicated by other factors, especially the level of proficiency of the learner and whether or not one or more of the hyponyms are known to the learner. At higher levels (when it is more likely that one or more of the hyponyms are already, even partially, known), semantic clustering is not a problem. I would add that, on the whole at higher levels, the deliberate learning of vocabulary is even less efficient than at lower levels and should be an increasingly small part of a well-balanced vocabulary programme.

So, why is there a problem drawing practical conclusions from the research? In order to have any scientific validity at all, researchers need to control a large number of variable. They need, for example, to be sure that learners do not already know any of the items that are being presented. The only practical way of doing this is to present sets of invented words, and this is what most of the research does (Sarioğlu, 2018). These artificial words solve one problem, but create others, the most significant of which is item difficulty. Many factors impact on item difficulty, and these include word frequency (obviously a problem with invented words), word length, pronounceability and the familiarity and length of the corresponding item in L1. None of the studies which support the abandonment of semantic clusters have controlled all of these variables (Nakata and Suzuki, 2019). Indeed, it would be practically impossible to do so. Learning pseudo-words is a very different proposition to learning real words, which a learner may subsequently encounter or want to use.

Take, for example, the days of the week. It’s quite common for learners to muddle up Tuesday and Thursday. The reason for this is not just semantic similarity (Tuesday and Monday are less frequently confused). They are also very similar in terms of both spelling and pronunciation. They are ‘synforms’ (see Laufer, 2009), which, like semantic clusters, can hinder learning of new items. But, now imagine a French-speaking learner of Spanish studying the days of the week. It is much less likely that martes and jueves will be muddled, because of their similarity to the French words mardi and jeudi. There would appear to be no good reason not to teach the complete set of days of the week to a learner like this. All other things being equal, it is probably a good idea to avoid semantic clusters, but all other things are very rarely equal.

Again, in an attempt to control for variables, researchers typically present the target items in isolation (in bilingual pairings). But, again, the real world does not normally conform to this condition. Leo Sellivan (2014) suggests that semantic clusters (e.g. colours) are taught as part of collocations. He gives the examples of red dress, green grass and black coffee, and points out that the alliterative patterns can serve as mnemonic devices which will facilitate learning. The suggestion is, I think, a very good one, but, more generally, it’s worth noting that the presentation of lexical items in both digital flashcards and platform courses is rarely context-free. Contexts will inevitably impact on learning and may well obviate the risks of semantic clustering.

Finally, this kind of research typically gives participants very restricted time to memorize the target words (Sarioğlu, 2018) and they are tested in very controlled recall tasks. In the case of language platform courses, practice of target items is usually spread out over a much longer period of time, with a variety of exposure opportunities (in controlled practice tasks, exposure in texts, personalisation tasks, revision exercises, etc.) both within and across learning units. In this light, it is not unreasonable to argue that laboratory-type research offers only limited insights into what should happen in the real world of language learning and teaching. The choice of learning items, the way they are presented and practised, and the variety of activities in the well-balanced vocabulary programme are probably all more significant than the question of whether items are organised into semantic clusters.

Although semantic clusters are quite common in language learning materials, much more common are thematic clusters (i.e. groups of words which are topically related, but include a variety of parts of speech (see below). Researchers, it seems, have no problem with this way of organising lexical sets. By way of conclusion, here’s an extract from a recent book:

‘Introducing new words together that are similar in meaning (synonyms), such as scared and frightened, or forms (synforms), like contain and maintain, can be confusing, and students are less likely to remember them. This problem is known as ‘interference’. One way to avoid this is to choose words that are around the same theme, but which include a mix of different parts of speech. For example, if you want to focus on vocabulary to talk about feelings, instead of picking lots of adjectives (happy, sad, angry, scared, frightened, nervous, etc.) include some verbs (feel, enjoy, complain) and some nouns (fun, feelings, nerves). This also encourages students to use a variety of structures with the vocabulary.’ (Hughes, et al., 2015: 25)

 

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Erten, I.H., & Tekin, M. 2008. Effects on vocabulary acquisition of presenting new words in semantic sets versus semantically-unrelated sets. System, 36 (3), 407-422

Finkbeiner, M. & Nicol, J. 2003. Semantic category effects in second language word learning. Applied Psycholinguistics 24 (2003), 369–383

Folse, K. S. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Hashemi, M.R., & Gowdasiaei, F. 2005. An attribute-treatment interaction study: Lexical-set versus semantically-unrelated vocabulary instruction. RELC Journal, 36 (3), 341-361

Higa, M. 1963. Interference effects of intralist word relationships in verbal learning. Journal of Verbal Learning and Verbal Behavior, 2, 170-175

Hoshino, Y. 2010. The categorical facilitation effects on L2 vocabulary learning in a classroom setting. RELC Journal, 41, 301–312

Hughes, S. H., Mauchline, F. & Moore, J. 2019. ETpedia Vocabulary. Shoreham-by-Sea: Pavilion Publishing and Media

Ishii, T. 2015. Semantic connection or visual connection: Investigating the true source of confusion. Language Teaching Research, 19, 712–722

Laufer, B. 2009. The concept of ‘synforms’ (similar lexical forms) in vocabulary acquisition. Language and Education, 2 (2): 113 – 132

Nakata, T. & Suzuki, Y. 2019. Effects Of Massing And Spacing On The Learning Of Semantically Related And Unrelated Words. Studies in Second Language Acquisition 41 (2), 287 – 311

Nation, P. 2005. Teaching Vocabulary. Asian EFL Journal. http://www.asian-efl-journal.com/sept_05_pn.pdf

Papathanasiou, E. 2009. An investigation of two ways of presenting vocabulary. ELT Journal 63 (4), 313 – 322

Sarioğlu, M. 2018. A Matter of Controversy: Teaching New L2 Words in Semantic Sets or Unrelated Sets. Journal of Higher Education and Science Vol 8 / 1: 172 – 183

Schneider, V. I., Healy, A. F., & Bourne, L. E. 1998. Contextual interference effects in foreign language vocabulary acquisition and retention. In Healy, A. F. & Bourne, L. E. (Eds.), Foreign language learning: Psycholinguistic studies on training and retention (pp. 77–90). Mahwah, NJ: Erlbaum

Schneider, V. I., Healy, A. F., & Bourne, L. E. 2002. What is learned under difficult conditions is hard to forget: Contextual interference effects in foreign vocabulary acquisition, retention, and transfer. Journal of Memory and Language, 46, 419–440

Sellivan, L. 2014. Horizontal alternatives to vertical lists. Blog post: http://leoxicon.blogspot.com/2014/03/horizontal-alternatives-to-vertical.html

Tinkham, T. 1993. The effect of semantic clustering on the learning of second language vocabulary. System 21 (3), 371-380.

Tinkham, T. 1997. The effects of semantic and thematic clustering on the learning of a second language vocabulary. Second Language Research, 13 (2),138-163

Waring, R. 1997. The negative effects of learning words in semantic sets: a replication. System, 25 (2), 261 – 274