From time to time, I have mentioned Programmed Learning (or Programmed Instruction) in this blog (here and here, for example). It felt like time to go into a little more detail about what Programmed Instruction was (and is) and why I think it’s important to know about it.

A brief description

The basic idea behind Programmed Instruction was that subject matter could be broken down into very small parts, which could be organised into an optimal path for presentation to students. Students worked, at their own speed, through a series of micro-tasks, building their mastery of each nugget of learning that was presented, not progressing from one to the next until they had demonstrated they could respond accurately to the previous task.

There were two main types of Programmed Instruction: linear programming and branching programming. In the former, every student would follow the same path, the same sequence of frames. This could be used in classrooms for whole-class instruction and I tracked down a book (illustrated below) called ‘Programmed English Course Student’s Book 1’ (Hill, 1966), which was an attempt to transfer the ideas behind Programmed Instruction to a zero-tech, class environment. This is very similar in approach to the material I had to use when working at an Inlingua school in the 1980s.

Programmed English Course

Comparatives strip

An example of how self-paced programming worked is illustrated here, with a section on comparatives.

With branching programming, ‘extra frames (or branches) are provided for students who do not get the correct answer’ (Kay et al., 1968: 19). This was only suitable for self-study, but it was clearly preferable, as it allowed for self-pacing and some personalization. The material could be presented in books (which meant that students had to flick back and forth in their books) or with special ‘teaching machines’, but the latter were preferred.

In the words of an early enthusiast, Programmed Instruction was essentially ‘a device to control a student’s behaviour and help him to learn without the supervision of a teacher’ (Kay et al.,1968: 58). The approach was inspired by the work of Skinner and it was first used as part of a university course in behavioural psychology taught by Skinner at Harvard University in 1957. It moved into secondary schools for teaching mathematics in 1959 (Saettler, 2004: 297).

Enthusiasm and uptake

The parallels between current enthusiasm for the power of digital technology to transform education and the excitement about Programmed Instruction and teaching machines in the 1960s are very striking (McDonald et al., 2005: 90). In 1967, it was reported that ‘we are today on the verge of what promises to be a revolution in education’ (Goodman, 1967: 3) and that ‘tremors of excitement ran through professional journals and conferences and department meetings from coast to coast’ (Kennedy, 1967: 871). The following year, another commentator referred to the way that the field of education had been stirred ‘with an almost Messianic promise of a breakthrough’ (Ornstein, 1968: 401). Programmed instruction was also seen as an exciting business opportunity: ‘an entire industry is just coming into being and significant sales and profits should not be too long in coming’, wrote one hopeful financial analyst as early as 1961 (Kozlowski, 1967: 47).

The new technology seemed to offer a solution to the ‘problems of education’. Media reports in 1963 in Germany, for example, discussed a shortage of teachers, large classes and inadequate learning progress … ‘an ‘urgent pedagogical emergency’ that traditional teaching methods could not resolve’ (Hof, 2018). Individualised learning, through Programmed Instruction, would equalise educational opportunity and if you weren’t part of it, you would be left behind. In the US, two billion dollars were spent on educational technology by the government in the decade following the passing of the National Defense Education Act, and this was added to by grants from private foundations. As a result, ‘the production of teaching machines began to flourish, accompanied by the marketing of numerous ‘teaching units’ stamped into punch cards as well as less expensive didactic programme books and index cards. The market grew dramatically in a short time’ (Hof, 2018).

In the field of language learning, however, enthusiasm was more muted. In the year in which he completed his doctoral studies[1], the eminent linguist, Bernard Spolsky noted that ‘little use is actually being made of the new technique’ (Spolsky, 1966). A year later, a survey of over 600 foreign language teachers at US colleges and universities reported that only about 10% of them had programmed materials in their departments (Valdman, 1968: 1). In most of these cases, the materials ‘were being tried out on an experimental basis under the direction of their developers’. And two years after that, it was reported that ‘programming has not yet been used to any very great extent in language teaching, so there is no substantial body of experience from which to draw detailed, water-tight conclusions’ (Howatt, 1969: 164).

By the early 1970s, Programmed Instruction was already beginning to seem like yesterday’s technology, even though the principles behind it are still very much alive today (Thornbury (2017) refers to Duolingo as ‘Programmed Instruction’). It would be nice to think that language teachers of the day were more sceptical than, for example, their counterparts teaching mathematics. It would be nice to think that, like Spolsky, they had taken on board Chomsky’s (1959) demolition of Skinner. But the widespread popularity of Audiolingual methods suggests otherwise. Audiolingualism, based essentially on the same Skinnerian principles as Programmed Instruction, needed less outlay on technology. The machines (a slide projector and a record or tape player) were cheaper than the teaching machines, could be used for other purposes and did not become obsolete so quickly. The method also lent itself more readily to established school systems (i.e. whole-class teaching) and the skills sets of teachers of the day. Significantly, too, there was relatively little investment in Programmed Instruction for language teaching (compared to, say, mathematics), since this was a smallish and more localized market. There was no global market for English language learning as there is today.

Lessons to be learned

1 Shaping attitudes

It was not hard to persuade some educational authorities of the value of Programmed Instruction. As discussed above, it offered a solution to the problem of ‘the chronic shortage of adequately trained and competent teachers at all levels in our schools, colleges and universities’, wrote Goodman (1967: 3), who added, there is growing realisation of the need to give special individual attention to handicapped children and to those apparently or actually retarded’. The new teaching machines ‘could simulate the human teacher and carry out at least some of his functions quite efficiently’ (Goodman, 1967: 4). This wasn’t quite the same thing as saying that the machines could replace teachers, although some might have hoped for this. The official line was more often that the machines could ‘be used as devices, actively co-operating with the human teacher as adaptive systems and not just merely as aids’ (Goodman, 1967: 37). But this more nuanced message did not always get through, and ‘the Press soon stated that robots would replace teachers and conjured up pictures of classrooms of students with little iron men in front of them’ (Kay et al., 1968: 161).

For teachers, though, it was one thing to be told that the machines would free their time to perform more meaningful tasks, but harder to believe when this was accompanied by a ‘rhetoric of the instructional inadequacies of the teacher’ (McDonald, et al., 2005: 88). Many teachers felt threatened. They ‘reacted against the ‘unfeeling machine’ as a poor substitute for the warm, responsive environment provided by a real, live teacher. Others have seemed to take it more personally, viewing the advent of programmed instruction as the end of their professional career as teachers. To these, even the mention of programmed instruction produces a momentary look of panic followed by the appearance of determination to stave off the ominous onslaught somehow’ (Tucker, 1972: 63).

Some of those who were pushing for Programmed Instruction had a bigger agenda, with their sights set firmly on broader school reform made possible through technology (Hof, 2018). Individualised learning and Programmed Instruction were not just ends in themselves: they were ways of facilitating bigger changes. The trouble was that teachers were necessary for Programmed Instruction to work. On the practical level, it became apparent that a blend of teaching machines and classroom teaching was more effective than the machines alone (Saettler, 2004: 299). But the teachers’ attitudes were crucial: a research study involving over 6000 students of Spanish showed that ‘the more enthusiastic the teacher was about programmed instruction, the better the work the students did, even though they worked independently’ (Saettler, 2004: 299). In other researched cases, too, ‘teacher attitudes proved to be a critical factor in the success of programmed instruction’ (Saettler, 2004: 301).

2 Returns on investment

Pricing a hyped edtech product is a delicate matter. Vendors need to see a relatively quick return on their investment, before a newer technology knocks them out of the market. Developments in computing were fast in the late 1960s, and the first commercially successful personal computer, the Altair 8800, appeared in 1974. But too high a price carried obvious risks. In 1967, the cheapest teaching machine in the UK, the Tutorpack (from Packham Research Ltd), cost £7 12s (equivalent to about £126 today), but machines like these were disparagingly referred to as ‘page-turners’ (Higgins, 1983: 4). A higher-end linear programming machine cost twice this amount. Branching programme machines cost a lot more. The Mark II AutoTutor (from USI Great Britain Limited), for example, cost £31 per month (equivalent to £558), with eight reels of programmes thrown in (Goodman, 1967: 26). A lower-end branching machine, the Grundytutor, could be bought for £ 230 (worth about £4140 today).

Teaching machines (from Goodman)AutoTutor Mk II (from Goodman)

This was serious money, and any institution splashing out on teaching machines needed to be confident that they would be well used for a long period of time (Nordberg, 1965). The programmes (the software) were specific to individual machines and the content could not be updated easily. At the same time, other technological developments (cine projectors, tape recorders, record players) were arriving in classrooms, and schools found themselves having to pay for technical assistance and maintenance. The average teacher was ‘unable to avail himself fully of existing aids because, to put it bluntly, he is expected to teach for too many hours a day and simply has not the time, with all the administrative chores he is expected to perform, either to maintain equipment, to experiment with it, let alone keeping up with developments in his own and wider fields. The advent of teaching machines which can free the teacher to fulfil his role as an educator will intensify and not diminish the problem’ (Goodman, 1967: 44). Teaching machines, in short, were ‘oversold and underused’ (Cuban, 2001).

3 Research and theory

Looking back twenty years later, B. F. Skinner conceded that ‘the machines were crude, [and] the programs were untested’ (Skinner, 1986: 105). The documentary record suggests that the second part of this statement is not entirely true. Herrick (1966: 695) reported that ‘an overwhelming amount of research time has been invested in attempts to determine the relative merits of programmed instruction when compared to ‘traditional’ or ‘conventional’ methods of instruction. The results have been almost equally overwhelming in showing no significant differences’. In 1968, Kay et al (1968: 96) noted that ‘there has been a definite effort to examine programmed instruction’. A later meta-analysis of research in secondary education (Kulik et al.: 1982) confirmed that ‘Programmed Instruction did not typically raise student achievement […] nor did it make students feel more positively about the subjects they were studying’.

It was not, therefore, the case that research was not being done. It was that many people were preferring not to look at it. The same holds true for theoretical critiques. In relation to language learning, Spolsky (1966) referred to Chomsky’s (1959) rebuttal of Skinner’s arguments, adding that ‘there should be no need to rehearse these inadequacies, but as some psychologists and even applied linguists appear to ignore their existence it might be as well to remind readers of a few’. Programmed Instruction might have had a limited role to play in language learning, but vendors’ claims went further than that and some people believed them: ‘Rather than addressing themselves to limited and carefully specified FL tasks – for example the teaching of spelling, the teaching of grammatical concepts, training in pronunciation, the acquisition of limited proficiency within a restricted number of vocabulary items and grammatical features – most programmers aimed at self-sufficient courses designed to lead to near-native speaking proficiency’ (Valdman, 1968: 2).

4 Content

When learning is conceptualised as purely the acquisition of knowledge, technological optimists tend to believe that machines can convey it more effectively and more efficiently than teachers (Hof, 2018). The corollary of this is the belief that, if you get the materials right (plus the order in which they are presented and appropriate feedback), you can ‘to a great extent control and engineer the quality and quantity of learning’ (Post, 1972: 14). Learning, in other words, becomes an engineering problem, and technology is its solution.

One of the problems was that technology vendors were, first and foremost, technology specialists. Content was almost an afterthought. Materials writers needed to be familiar with the technology and, if not, they were unlikely to be employed. Writers needed to believe in the potential of the technology, so those familiar with current theory and research would clearly not fit in. The result was unsurprising. Kennedy (1967: 872) reported that ‘there are hundreds of programs now available. Many more will be published in the next few years. Watch for them. Examine them critically. They are not all of high quality’. He was being polite.

5 Motivation

As is usually the case with new technologies, there was a positive novelty effect with Programmed Instruction. And, as is always the case, the novelty effect wears off: ‘students quickly tired of, and eventually came to dislike, programmed instruction’ (McDonald et al.: 89). It could not really have been otherwise: ‘human learning and intrinsic motivation are optimized when persons experience a sense of autonomy, competence, and relatedness in their activity. Self-determination theorists have also studied factors that tend to occlude healthy functioning and motivation, including, among others, controlling environments, rewards contingent on task performance, the lack of secure connection and care by teachers, and situations that do not promote curiosity and challenge’ (McDonald et al.: 93). The demotivating experience of using these machines was particularly acute with younger and ‘less able’ students, as was noted at the time (Valdman, 1968: 9).

The unlearned lessons

I hope that you’ll now understand why I think the history of Programmed Instruction is so relevant to us today. In the words of my favourite Yogi-ism, it’s like deja vu all over again. I have quoted repeatedly from the article by McDonald et al (2005) and I would highly recommend it – available here. Hopefully, too, Audrey Watters’ forthcoming book, ‘Teaching Machines’, will appear before too long, and she will, no doubt, have much more of interest to say on this topic.

References

Chomsky N. 1959. ‘Review of Skinner’s Verbal Behavior’. Language, 35:26–58.

Cuban, L. 2001. Oversold & Underused: Computers in the Classroom. (Cambridge, MA: Harvard University Press)

Goodman, R. 1967. Programmed Learning and Teaching Machines 3rd edition. (London: English Universities Press)

Herrick, M. 1966. ‘Programmed Instruction: A critical appraisal’ The American Biology Teacher, 28 (9), 695 -698

Higgins, J. 1983. ‘Can computers teach?’ CALICO Journal, 1 (2)

Hill, L. A. 1966. Programmed English Course Student’s Book 1. (Oxford: Oxford University Press)

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47:4, 445-465

Howatt, A. P. R. 1969. Programmed Learning and the Language Teacher. (London: Longmans)

Kay, H., Dodd, B. & Sime, M. 1968. Teaching Machines and Programmed Instruction. (Harmondsworth: Penguin)

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 / 6, 47 – 54

Kulik, C.-L., Schwalb, B. & Kulik, J. 1982. ‘Programmed Instruction in Secondary Education: A Meta-analysis of Evaluation Findings’ Journal of Educational Research, 75: 133 – 138

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 / 2, 84 – 98

Nordberg, R. B. 1965. Teaching machines-six dangers and one advantage. In J. S. Roucek (Ed.), Programmed teaching: A symposium on automation in education (pp. 1–8). (New York: Philosophical Library)

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 / 7, 401 – 410

Post, D. 1972. ‘Up the programmer: How to stop PI from boring learners and strangling results’. Educational Technology, 12(8), 14–1

Saettler, P. 2004. The Evolution of American Educational Technology. (Greenwich, Conn.: Information Age Publishing)

Skinner, B. F. 1986. ‘Programmed Instruction Revisited’ The Phi Delta Kappan, 68 (2), 103 – 110

Spolsky, B. 1966. ‘A psycholinguistic critique of programmed foreign language instruction’ International Review of Applied Linguistics in Language Teaching, Volume 4, Issue 1-4: 119–130

Thornbury, S. 2017. Scott Thornbury’s 30 Language Teaching Methods. (Cambridge: Cambridge University Press)

Tucker, C. 1972. ‘Programmed Dictation: An Example of the P.I. Process in the Classroom’. TESOL Quarterly, 6(1), 61-70

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14

 

 

 

[1] Spolsky’ doctoral thesis for the University of Montreal was entitled ‘The psycholinguistic basis of programmed foreign language instruction’.

 

 

 

 

 

Book_coverIn my last post, I looked at shortcomings in edtech research, mostly from outside the world of ELT. I made a series of recommendations of ways in which such research could become more useful. In this post, I look at two very recent collections of ELT edtech research. The first of these is Digital Innovations and Research in Language Learning, edited by Mavridi and Saumell, and published this February by the Learning Technologies SIG of IATEFL. I’ll refer to it here as DIRLL. It’s available free to IATEFL LT SIG members, and can be bought for $10.97 as an ebook on Amazon (US). The second is the most recent edition (February 2020) of the Language Learning & Technology journal, which is open access and available here. I’ll refer to it here as LLTJ.

In both of these collections, the focus is not on ‘technology per se, but rather issues related to language learning and language teaching, and how they are affected or enhanced by the use of digital technologies’. However, they are very different kinds of publication. Nobody involved in the production of DIRLL got paid in any way (to the best of my knowledge) and, in keeping with its provenance from a teachers’ association, has ‘a focus on the practitioner as teacher-researcher’. Almost all of the contributing authors are university-based, but they are typically involved more in language teaching than in research. With one exception (a grant from the EU), their work was unfunded.

The triannual LLTJ is funded by two American universities and published by the University of Hawaii Press. The editors and associate editors are well-known scholars in their fields. The journal’s impact factor is high, close to the impact factor of the paywalled reCALL (published by the University of Cambridge), which is the highest-ranking journal in the field of CALL. The contributing authors are all university-based, many with a string of published articles (in prestige journals), chapters or books behind them. At least six of the studies were funded by national grant-awarding bodies.

I should begin by making clear that there was much in both collections that I found interesting. However, it was not usually the research itself that I found informative, but the literature review that preceded it. Two of the chapters in DIRLL were not really research, anyway. One was the development of a template for evaluating ICT-mediated tasks in CLIL, another was an advocacy of comics as a resource for language teaching. Both of these were new, useful and interesting to me. LLTJ included a valuable literature review of research into VR in FL learning (but no actual new research). With some exceptions in both collections, though, I felt that I would have been better off curtailing my reading after the reviews. Admittedly, there wouldn’t be much in the way of literature reviews if there were no previous research to report …

It was no surprise to see the learners who were the subjects of this research were overwhelmingly university students. In fact, only one article (about a high-school project in Israel, reported in DIRLL) was not about university students. The research areas focused on reflected this bias towards tertiary contexts: online academic reading skills, academic writing, online reflective practices in teacher training programmes, etc.

In a couple of cases, the selection of experimental subjects seemed plain bizarre. Why, if you want to find out about the extent to which Moodle use can help EAP students become better academic readers (in DIRLL), would you investigate this with a small volunteer cohort of postgraduate students of linguistics, with previous experience of using Moodle and experience of teaching? Is a less representative sample imaginable? Why, if you want to investigate the learning potential of the English File Pronunciation app (reported in LLTJ), which is clearly most appropriate for A1 – B1 levels, would you do this with a group of C1-level undergraduates following a course in phonetics as part of an English Studies programme?

More problematic, in my view, was the small sample size in many of the research projects. The Israeli virtual high school project (DIRLL), previously referred to, started out with only 11 students, but 7 dropped out, primarily, it seems, because of institutional incompetence: ‘the project was probably doomed […] to failure from the start’, according to the author. Interesting as this was as an account of how not to set up a project of this kind, it is simply impossible to draw any conclusions from 4 students about the potential of a VLE for ‘interaction, focus and self-paced learning’. The questionnaire investigating experience of and attitudes towards VR (in DIRLL) was completed by only 7 (out of 36 possible) students and 7 (out of 70+ possible) teachers. As the author acknowledges, ‘no great claims can be made’, but then goes on to note the generally ‘positive attitudes to VR’. Perhaps those who did not volunteer had different attitudes? We will never know. The study of motivational videos in tertiary education (DIRLL) started off with 15 subjects, but 5 did not complete the necessary tasks. The research into L1 use in videoconferencing (LLTJ) started off with 10 experimental subjects, all with the same L1 and similar cultural backgrounds, but there was no data available from 4 of them (because they never switched into L1). The author claims that the paper demonstrates ‘how L1 is used by language learners in videoconferencing as a social semiotic resource to support social presence’ – something which, after reading the literature review, we already knew. But the paper also demonstrates quite clearly how L1 is not used by language learners in videoconferencing as a social semiotic resource to support social presence. In all these cases, it is the participants who did not complete or the potential participants who did not want to take part that have the greatest interest for me.

Unsurprisingly, the LLTJ articles had larger sample sizes than those in DIRLL, but in both collections the length of the research was limited. The production of one motivational video (DIRLL) does not really allow us to draw any conclusions about the development of students’ critical thinking skills. Two four-week interventions do not really seem long enough to me to discover anything about learner autonomy and Moodle (DIRLL). An experiment looking at different feedback modes needs more than two written assignments to reach any conclusions about student preferences (LLTJ).

More research might well be needed to compensate for the short-term projects with small sample sizes, but I’m not convinced that this is always the case. Lacking sufficient information about the content of the technologically-mediated tools being used, I was often unable to reach any conclusions. A gamified Twitter environment was developed in one project (DIRLL), using principles derived from contemporary literature on gamification. The authors concluded that the game design ‘failed to generate interaction among students’, but without knowing a lot more about the specific details of the activity, it is impossible to say whether the problem was the principles or the particular instantiation of those principles. Another project, looking at the development of pronunciation materials for online learning (LLTJ), came to the conclusion that online pronunciation training was helpful – better than none at all. Claims are then made about the value of the method used (called ‘innovative Cued Pronunciation Readings’), but this is not compared to any other method / materials, and only a very small selection of these materials are illustrated. Basically, the reader of this research has no choice but to take things on trust. The study looking at the use of Alexa to help listening comprehension and speaking fluency (LLTJ) cannot really tell us anything about IPAs unless we know more about the particular way that Alexa is being used. Here, it seems that the students were using Alexa in an interactive storytelling exercise, but so little information is given about the exercise itself that I didn’t actually learn anything at all. The author’s own conclusion is that the results, such as they are, need to be treated with caution. Nevertheless, he adds ‘the current study illustrates that IPAs may have some value to foreign language learners’.

This brings me onto my final gripe. To be told that IPAs like Alexa may have some value to foreign language learners is to be told something that I already know. This wasn’t the only time this happened during my reading of these collections. I appreciate that research cannot always tell us something new and interesting, but a little more often would be nice. I ‘learnt’ that goal-setting plays an important role in motivation and that gamification can boost short-term motivation. I ‘learnt’ that reflective journals can take a long time for teachers to look at, and that reflective video journals are also very time-consuming. I ‘learnt’ that peer feedback can be very useful. I ‘learnt’ from two papers that intercultural difficulties may be exacerbated by online communication. I ‘learnt’ that text-to-speech software is pretty good these days. I ‘learnt’ that multimodal literacy can, most frequently, be divided up into visual and auditory forms.

With the exception of a piece about online safety issues (DIRLL), I did not once encounter anything which hinted that there may be problems in using technology. No mention of the use to which student data might be put. No mention of the costs involved (except for the observation that many students would not be happy to spend money on the English File Pronunciation app) or the cost-effectiveness of digital ‘solutions’. No consideration of the institutional (or other) pressures (or the reasons behind them) that may be applied to encourage teachers to ‘leverage’ edtech. No suggestion that a zero-tech option might actually be preferable. In both collections, the language used is invariably positive, or, at least, technology is associated with positive things: uncovering the possibilities, promoting autonomy, etc. Even if the focus of these publications is not on technology per se (although I think this claim doesn’t really stand up to close examination), it’s a little disingenuous to claim (as LLTJ does) that the interest is in how language learning and language teaching is ‘affected or enhanced by the use of digital technologies’. The reality is that the overwhelming interest is in potential enhancements, not potential negative effects.

I have deliberately not mentioned any names in referring to the articles I have discussed. I would, though, like to take my hat off to the editors of DIRLL, Sophia Mavridi and Vicky Saumell, for attempting to do something a little different. I think that Alicia Artusi and Graham Stanley’s article (DIRLL) about CPD for ‘remote’ teachers was very good and should interest the huge number of teachers working online. Chryssa Themelis and Julie-Ann Sime have kindled my interest in the potential of comics as a learning resource (DIRLL). Yu-Ju Lan’s article about VR (LLTJ) is surely the most up-to-date, go-to article on this topic. There were other pieces, or parts of pieces, that I liked, too. But, to me, it’s clear that ‘more research is needed’ … much less than (1) better and more critical research, and (2) more digestible summaries of research.

Colloquium

At the beginning of March, I’ll be going to Cambridge to take part in a Digital Learning Colloquium (for more information about the event, see here ). One of the questions that will be explored is how research might contribute to the development of digital language learning. In this, the first of two posts on the subject, I’ll be taking a broad overview of the current state of play in edtech research.

I try my best to keep up to date with research. Of the main journals, there are Language Learning and Technology, which is open access; CALICO, which offers quite a lot of open access material; and reCALL, which is the most restricted in terms of access of the three. But there is something deeply frustrating about most of this research, and this is what I want to explore in these posts. More often than not, research articles end with a call for more research. And more often than not, I find myself saying ‘Please, no, not more research like this!’

First, though, I would like to turn to a more reader-friendly source of research findings. Systematic reviews are, basically literature reviews which can save people like me from having to plough through endless papers on similar subjects, all of which contain the same (or similar) literature review in the opening sections. If only there were more of them. Others agree with me: the conclusion of one systematic review of learning and teaching with technology in higher education (Lillejord et al., 2018) was that more systematic reviews were needed.

Last year saw the publication of a systematic review of research on artificial intelligence applications in higher education (Zawacki-Richter, et al., 2019) which caught my eye. The first thing that struck me about this review was that ‘out of 2656 initially identified publications for the period between 2007 and 2018, 146 articles were included for final synthesis’. In other words, only just over 5% of the research was considered worthy of inclusion.

The review did not paint a very pretty picture of the current state of AIEd research. As the second part of the title of this review (‘Where are the educators?’) makes clear, the research, taken as a whole, showed a ‘weak connection to theoretical pedagogical perspectives’. This is not entirely surprising. As Bates (2019) has noted: ‘since AI tends to be developed by computer scientists, they tend to use models of learning based on how computers or computer networks work (since of course it will be a computer that has to operate the AI). As a result, such AI applications tend to adopt a very behaviourist model of learning: present / test / feedback.’ More generally, it is clear that technology adoption (and research) is being driven by technology enthusiasts, with insufficient expertise in education. The danger is that edtech developers ‘will simply ‘discover’ new ways to teach poorly and perpetuate erroneous ideas about teaching and learning’ (Lynch, 2017).

This, then, is the first of my checklist of things that, collectively, researchers need to do to improve the value of their work. The rest of this list is drawn from observations mostly, but not exclusively, from the authors of systematic reviews, and mostly come from reviews of general edtech research. In the next blog post, I’ll look more closely at a recent collection of ELT edtech research (Mavridi & Saumell, 2020) to see how it measures up.

1 Make sure your research is adequately informed by educational research outside the field of edtech

Unproblematised behaviourist assumptions about the nature of learning are all too frequent. References to learning styles are still fairly common. The most frequently investigated skill that is considered in the context of edtech is critical thinking (Sosa Neira, et al., 2017), but this is rarely defined and almost never problematized, despite a broad literature that questions the construct.

2 Adopt a sceptical attitude from the outset

Know your history. Decades of technological innovation in education have shown precious little in the way of educational gains and, more than anything else, have taught us that we need to be sceptical from the outset. ‘Enthusiasm and praise that are directed towards ‘virtual education, ‘school 2.0’, ‘e-learning and the like’ (Selwyn, 2014: vii) are indications that the lessons of the past have not been sufficiently absorbed (Levy, 2016: 102). The phrase ‘exciting potential’, for example, should be banned from all edtech research. See, for example, a ‘state-of-the-art analysis of chatbots in education’ (Winkler & Söllner, 2018), which has nothing to conclude but ‘exciting potential’. Potential is fine (indeed, it is perhaps the only thing that research can unambiguously demonstrate – see section 3 below), but can we try to be a little more grown-up about things?

3 Know what you are measuring

Measuring learning outcomes is tricky, to say the least, but it’s understandable that researchers should try to focus on them. Unfortunately, ‘the vast array of literature involving learning technology evaluation makes it challenging to acquire an accurate sense of the different aspects of learning that are evaluated, and the possible approaches that can be used to evaluate them’ (Lai & Bower, 2019). Metrics such as student grades are hard to interpret, not least because of the large number of variables and the danger of many things being conflated in one score. Equally, or possibly even more, problematic, are self-reporting measures which are rarely robust. It seems that surveys are the most widely used instrument in qualitative research (Sosa Neira, et al., 2017), but these will tell us little or nothing when used for short-term interventions (see point 5 below).

4 Ensure that the sample size is big enough to mean something

In most of the research into digital technology in education that was analysed in a literature review carried out for the Scottish government (ICF Consulting Services Ltd, 2015), there were only ‘small numbers of learners or teachers or schools’.

5 Privilege longitudinal studies over short-term projects

The Scottish government literature review (ICF Consulting Services Ltd, 2015), also noted that ‘most studies that attempt to measure any outcomes focus on short and medium term outcomes’. The fact that the use of a particular technology has some sort of impact over the short or medium term tells us very little of value. Unless there is very good reason to suspect the contrary, we should assume that it is a novelty effect that has been captured (Levy, 2016: 102).

6 Don’t forget the content

The starting point of much edtech research is the technology, but most edtech, whether it’s a flashcard app or a full-blown Moodle course, has content. Research reports rarely give details of this content, assuming perhaps that it’s just fine, and all that’s needed is a little tech to ‘present learners with the ‘right’ content at the ‘right’ time’ (Lynch, 2017). It’s a foolish assumption. Take a random educational app from the Play Store, a random MOOC or whatever, and the chances are you’ll find it’s crap.

7 Avoid anecdotal accounts of technology use in quasi-experiments as the basis of a ‘research article’

Control (i.e technology-free) groups may not always be possible but without them, we’re unlikely to learn much from a single study. What would, however, be extremely useful would be a large, collated collection of such action-research projects, using the same or similar technology, in a variety of settings. There is a marked absence of this kind of work.

8 Enough already of higher education contexts

Researchers typically work in universities where they have captive students who they can carry out research on. But we have a problem here. The systematic review of Lundin et al (2018), for example, found that ‘studies on flipped classrooms are dominated by studies in the higher education sector’ (besides lacking anchors in learning theory or instructional design). With some urgency, primary and secondary contexts need to be investigated in more detail, not just regarding flipped learning.

9 Be critical

Very little edtech research considers the downsides of edtech adoption. Online safety, privacy and data security are hardly peripheral issues, especially with younger learners. Ignoring them won’t make them go away.

More research?

So do we need more research? For me, two things stand out. We might benefit more from, firstly, a different kind of research, and, secondly, more syntheses of the work that has already been done. Although I will probably continue to dip into the pot-pourri of articles published in the main CALL journals, I’m looking forward to a change at the CALICO journal. From September of this year, one issue a year will be thematic, with a lead article written by established researchers which will ‘first discuss in broad terms what has been accomplished in the relevant subfield of CALL. It should then outline which questions have been answered to our satisfaction and what evidence there is to support these conclusions. Finally, this article should pose a “soft” research agenda that can guide researchers interested in pursuing empirical work in this area’. This will be followed by two or three empirical pieces that ‘specifically reflect the research agenda, methodologies, and other suggestions laid out in the lead article’.

But I think I’ll still have a soft spot for some of the other journals that are coyer about their impact factor and that can be freely accessed. How else would I discover (it would be too mean to give the references here) that ‘the effective use of new technologies improves learners’ language learning skills’? Presumably, the ineffective use of new technologies has the opposite effect? Or that ‘the application of modern technology represents a significant advance in contemporary English language teaching methods’?

References

Bates, A. W. (2019). Teaching in a Digital Age Second Edition. Vancouver, B.C.: Tony Bates Associates Ltd. Retrieved from https://pressbooks.bccampus.ca/teachinginadigitalagev2/

ICF Consulting Services Ltd (2015). Literature Review on the Impact of Digital Technology on Learning and Teaching. Edinburgh: The Scottish Government. https://dera.ioe.ac.uk/24843/1/00489224.pdf

Lai, J.W.M. & Bower, M. (2019). How is the use of technology in education evaluated? A systematic review. Computers & Education, 133(1), 27-42. Elsevier Ltd. Retrieved January 14, 2020 from https://www.learntechlib.org/p/207137/

Levy, M. 2016. Researching in language learning and technology. In Farr, F. & Murray, L. (Eds.) The Routledge Handbook of Language Learning and Technology. Abingdon, Oxon.: Routledge. pp.101 – 114

Lillejord S., Børte K., Nesje K. & Ruud E. (2018). Learning and teaching with technology in higher education – a systematic review. Oslo: Knowledge Centre for Education https://www.forskningsradet.no/siteassets/publikasjoner/1254035532334.pdf

Lundin, M., Bergviken Rensfeldt, A., Hillman, T. et al. (2018). Higher education dominance and siloed knowledge: a systematic review of flipped classroom research. International Journal of Educational Technology in Higher Education 15, 20 (2018) doi:10.1186/s41239-018-0101-6

Lynch, J. (2017). How AI Will Destroy Education. Medium, November 13, 2017. https://buzzrobot.com/how-ai-will-destroy-education-20053b7b88a6

Mavridi, S. & Saumell, V. (Eds.) (2020). Digital Innovations and Research in Language Learning. Faversham, Kent: IATEFL

Selwyn, N. (2014). Distrusting Educational Technology. New York: Routledge

Sosa Neira, E. A., Salinas, J. and de Benito Crosetti, B. (2017). Emerging Technologies (ETs) in Education: A Systematic Review of the Literature Published between 2006 and 2016. International Journal of Emerging Technologies in Education, 12 (5). https://online-journals.org/index.php/i-jet/article/view/6939

Winkler, R. & Söllner, M. (2018): Unleashing the Potential of Chatbots in Education: A State-Of-The-Art Analysis. In: Academy of Management Annual Meeting (AOM). Chicago, USA. https://www.alexandria.unisg.ch/254848/1/JML_699.pdf

Zawacki-Richter, O., Bond, M., Marin, V. I. And Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education 2019

In my last post , I asked why it is so easy to believe that technology (in particular, technological innovations) will offer solutions to whatever problems exist in language learning and teaching. A simple, but inadequate, answer is that huge amounts of money have been invested in persuading us. Without wanting to detract from the significance of this, it is clearly not sufficient as an explanation. In an attempt to develop my own understanding, I have been turning more and more to the idea of ‘social imaginaries’. In many ways, this is also an attempt to draw together the various interests that I have had since starting this blog.

The Canadian philosopher, Charles Taylor, describes a ‘social imaginary’ as a ‘common understanding that makes possible common practices and a widely shared sense of legitimacy’ (Taylor, 2004: 23). As a social imaginary develops over time, it ‘begins to define the contours of [people’s] worlds and can eventually come to count as the taken-for-granted shape of things, too obvious to mention’ (Taylor, 2004: 29). It is, however, not just a set of ideas or a shared narrative: it is also a set of social practices that enact those understandings, whilst at the same time modifying or solidifying them. The understandings make the practices possible, and it is the practices that largely carry the understanding (Taylor, 2004: 25). In the process, the language we use is filled with new associations and our familiarity with these associations shapes ‘our perceptions and expectations’ (Worster, 1994, quoted in Moore, 2015: 33). A social imaginary, then, is a complex system that is not technological or economic or social or political or educational, but all of these (Urry, 2016). The image of the patterns of an amorphous mass of moving magma (Castoriadis, 1987), flowing through pre-existing channels, but also, at times, striking out along new paths, may offer a helpful metaphor.

Lava flow Hawaii

Technology, of course, plays a key role in contemporary social imaginaries and the term ‘sociotechnical imaginary’ is increasingly widely used. The understandings of the sociotechnical imaginary typically express visions of social progress and a desirable future that is made possible by advances in science and technology (Jasanoff & Kim, 2015: 4). In education, technology is presented as capable of overcoming human failings and the dark ways of the past, of facilitating a ‘pedagogical utopia of natural, authentic teaching and learning’ (Friesen, forthcoming). As such understandings become more widespread and as the educational practices (platforms, apps, etc.) which both shape and are shaped by them become equally widespread, technology has come to be seen as a ‘solution’ to the ‘problem’ of education (Friesen, forthcoming). We need to be careful, however, that having shaped the technology, it does not comes to shape us (see Cobo, 2019, for a further exploration of this idea).

As a way of beginning to try to understand what is going on in edtech in ELT, which is not so very different from what is taking place in education more generally, I have sketched a number of what I consider key components of the shared understandings and the social practices that are related to them. These are closely interlocking pieces and each of them is itself embedded in much broader understandings. They evolve over time and their history can be traced quite easily. Taken together, they do, I think, help us to understand a little more why technology in ELT seems so seductive.

1 The main purpose of English language teaching is to prepare people for the workplace

There has always been a strong connection between learning an additional living language (such as English) and preparing for the world of work. The first modern language schools, such as the Berlitz schools at the end of the 19th century with their native-speaker teachers and monolingual methods, positioned themselves as primarily vocational, in opposition to the kinds of language teaching taking place in schools and universities, which were more broadly humanistic in their objectives. Throughout the 20th century, and especially as English grew as a global language, the public sector, internationally, grew closer to the methods and objectives of the private schools. The idea that learning English might serve other purposes (e.g. cultural enrichment or personal development) has never entirely gone away, as witnessed by the Council of Europe’s list of objectives (including the promotion of mutual understanding and European co-operation, and the overcoming of prejudice and discrimination) in the Common European Framework, but it is often forgotten.

The clarion calls from industry to better align education with labour markets, present and future, grow louder all the time, often finding expression in claims that ‘education is unfit for purpose.’ It is invariably assumed that this purpose is to train students in the appropriate skills to enhance their ‘human capital’ in an increasingly competitive and global market (Lingard & Gale, 2007). Educational agendas are increasingly set by the world of business (bodies like the OECD or the World Economic Forum, corporations like Google or Microsoft, and national governments which share their priorities (see my earlier post about neo-liberalism and solutionism ).

One way in which this shift is reflected in English language teaching is in the growing emphasis that is placed on ‘21st century skills’ in teaching material. Sometimes called ‘life skills’, they are very clearly concerned with the world of work, rather than the rest of our lives. The World Economic Forum’s 2018 Future of Jobs survey lists the soft skills that are considered important in the near future and they include ‘creativity’, ‘critical thinking’, ‘emotional intelligence’ and ‘leadership’. (The fact that the World Economic Forum is made up of a group of huge international corporations (e.g. J.P. Morgan, HSBC, UBS, Johnson & Johnson) with a very dubious track record of embezzlement, fraud, money-laundering and tax evasion has not resulted in much serious, public questioning of the view of education expounded by the WEF.)

Without exception, the ELT publishers have brought these work / life skills into their courses, and the topic is an extremely popular one in ELT blogs and magazines, and at conferences. Two of the four plenaries at this year’s international IATEFL conference are concerned with these skills. Pearson has a wide range of related products, including ‘a four-level competency-based digital course that provides engaging instruction in the essential work and life skills competencies that adult learners need’. Macmillan ELT made ‘life skills’ the central plank of their marketing campaign and approach to product design, and even won a British Council ELTon (see below) Award for ‘Innovation in teacher resources) in 2015 for their ‘life skills’ marketing campaign. Cambridge University Press has developed a ‘Framework for Life Competencies’ which allows these skills to be assigned numerical values.

The point I am making here is not that these skills do not play an important role in contemporary society, nor that English language learners may not benefit from some training in them. The point, rather, is that the assumption that English language learning is mostly concerned with preparation for the workplace has become so widespread that it becomes difficult to think in another way.

2 Technological innovation is good and necessary

The main reason that soft skills are deemed to be so important is that we live in a rapidly-changing world, where the unsubstantiated claim that 85% (or whatever other figure comes to mind) of current jobs won’t exist 10 years from now is so often repeated that it is taken as fact . Whether or not this is true is perhaps less important to those who make the claim than the present and the future that they like to envisage. The claim is, at least, true-ish enough to resonate widely. Since these jobs will disappear, and new ones will emerge, because of technological innovations, education, too, will need to innovate to keep up.

English language teaching has not been slow to celebrate innovation. There were coursebooks called ‘Cutting Edge’ (1998) and ‘Innovations’ (2005), but more recently the connections between innovation and technology have become much stronger. The title of the recent ‘Language Hub’ (2019) was presumably chosen, in part, to conjure up images of digital whizzkids in fashionable co-working start-up spaces. Technological innovation is explicitly promoted in the Special Interest Groups of IATEFL and TESOL. Despite a singular lack of research that unequivocally demonstrates a positive connection between technology and language learning, the former’s objective is ‘to raise awareness among ELT professionals of the power of learning technologies to assist with language learning’. There is a popular annual conference, called InnovateELT , which has the tagline ‘Be Part of the Solution’, and the first problem that this may be a solution to is that our students need to be ‘ready to take on challenging new careers’.

Last, but by no means least, there are the annual British Council ELTon awards  with a special prize for digital innovation. Among the British Council’s own recent innovations are a range of digitally-delivered resources to develop work / life skills among teens.

Again, my intention (here) is not to criticise any of the things mentioned in the preceding paragraphs. It is merely to point to a particular structure of feeling and the way that is enacted and strengthened through material practices like books, social groups, conferences and other events.

3 Technological innovations are best driven by the private sector

The vast majority of people teaching English language around the world work in state-run primary and secondary schools. They are typically not native-speakers of English, they hold national teaching qualifications and they are frequently qualified to teach other subjects in addition to English (often another language). They may or may not self-identify as teachers of ‘ELT’ or ‘EFL’, often seeing themselves more as ‘school teachers’ or ‘language teachers’. People who self-identify as part of the world of ‘ELT or ‘TEFL’ are more likely to be native speakers and to work in the private sector (including private or semi-private language schools, universities (which, in English-speaking countries, are often indistinguishable from private sector institutions), publishing companies, and freelancers). They are more likely to hold international (TEFL) qualifications or higher degrees, and they are less likely to be involved in the teaching of other languages.

The relationship between these two groups is well illustrated by the practice of training days, where groups of a few hundred state-school teachers participate in workshops organised by publishing companies and delivered by ELT specialists. In this context, state-school teachers are essentially in a client role when they are in contact with the world of ‘ELT’ – as buyers or potential buyers of educational products, training or technology.

Technological innovation is invariably driven by the private sector. This may be in the development of technologies (platforms, apps and so on), in the promotion of technology (through training days and conference sponsorship, for example), or in training for technology (with consultancy companies like ELTjam or The Consultants-E, which offer a wide range of technologically oriented ‘solutions’).

As in education more generally, it is believed that the private sector can be more agile and more efficient than state-run bodies, which continue to decline in importance in educational policy-setting. When state-run bodies are involved in technological innovation in education, it is normal for them to work in partnership with the private sector.

4 Accountability is crucial

Efficacy is vital. It makes no sense to innovate unless the innovations improve something, but for us to know this, we need a way to measure it. In a previous post , I looked at Pearson’s ‘Asking More: the Path to Efficacy’ by CEO John Fallon (who will be stepping down later this year). Efficacy in education, says Fallon, is ‘making a measurable impact on someone’s life through learning’. ‘Measurable’ is the key word, because, as Fallon claims, ‘it is increasingly possible to determine what works and what doesn’t in education, just as in healthcare.’ We need ‘a relentless focus’ on ‘the learning outcomes we deliver’ because it is these outcomes that can be measured in ‘a systematic, evidence-based fashion’. Measurement, of course, is all the easier when education is delivered online, ‘real-time learner data’ can be captured, and the power of analytics can be deployed.

Data is evidence, and it’s as easy to agree on the importance of evidence as it is hard to decide on (1) what it is evidence of, and (2) what kind of data is most valuable. While those questions remain largely unanswered, the data-capturing imperative invades more and more domains of the educational world.

English language teaching is becoming data-obsessed. From language scales, like Pearson’s Global Scale of English to scales of teacher competences, from numerically-oriented formative assessment practices (such as those used on many LMSs) to the reporting of effect sizes in meta-analyses (such as those used by John Hattie and colleagues), datafication in ELT accelerates non-stop.

The scales and frameworks are all problematic in a number of ways (see, for example, this post on ‘The Mismeasure of Language’) but they have undeniably shaped the way that we are able to think. Of course, we need measurable outcomes! If, for the present, there are privacy and security issues, it is to be hoped that technology will find solutions to them, too.

REFERENCES

Castoriadis, C. (1987). The Imaginary Institution of Society. Cambridge: Polity Press.

Cobo, C. (2019). I Accept the Terms and Conditions. Montevideo: International Development Research Centre / Center for Research Ceibal Foundation. https://adaptivelearninginelt.files.wordpress.com/2020/01/41acf-cd84b5_7a6e74f4592c460b8f34d1f69f2d5068.pdf

Friesen, N. (forthcoming) The technological imaginary in education, or: Myth and enlightenment in ‘Personalized Learning’. In M. Stocchetti (Ed.) The Digital Age and its Discontents. University of Helsinki Press. Available at https://www.academia.edu/37960891/The_Technological_Imaginary_in_Education_or_Myth_and_Enlightenment_in_Personalized_Learning_

Jasanoff, S. & Kim, S.-H. (2015). Dreamscapes of Modernity. Chicago: University of Chicago Press.

Lingard, B. & Gale, T. (2007). The emergent structure of feeling: what does it mean for critical educational studies and research?, Critical Studies in Education, 48:1, pp. 1-23

Moore, J. W. (2015). Capitalism in the Web of Life. London: Verso.

Robbins, K. & Webster, F. (1989]. The Technical Fix. Basingstoke: Macmillan Education.

Taylor, C. (2014). Modern Social Imaginaries. Durham, NC: Duke University Press.

Urry, J. (2016). What is the Future? Cambridge: Polity Press.

 

At the start of the last decade, ELT publishers were worried, Macmillan among them. The financial crash of 2008 led to serious difficulties, not least in their key Spanish market. In 2011, Macmillan’s parent company was fined ₤11.3 million for corruption. Under new ownership, restructuring was a constant. At the same time, Macmillan ELT was getting ready to move from its Oxford headquarters to new premises in London, a move which would inevitably lead to the loss of a sizable proportion of its staff. On top of that, Macmillan, like the other ELT publishers, was aware that changes in the digital landscape (the first 3G iPhone had appeared in June 2008 and wifi access was spreading rapidly around the world) meant that they needed to shift away from the old print-based model. With her finger on the pulse, Caroline Moore, wrote an article in October 2010 entitled ‘No Future? The English Language Teaching Coursebook in the Digital Age’ . The publication (at the start of the decade) and runaway success of the online ‘Touchstone’ course, from arch-rivals, Cambridge University Press, meant that Macmillan needed to change fast if they were to avoid being left behind.

Macmillan already had a platform, Campus, but it was generally recognised as being clunky and outdated, and something new was needed. In the summer of 2012, Macmillan brought in two new executives – people who could talk the ‘creative-disruption’ talk and who believed in the power of big data to shake up English language teaching and publishing. At the time, the idea of big data was beginning to reach public consciousness and ‘Big Data: A Revolution that Will Transform how We Live, Work, and Think’ by Viktor Mayer-Schönberger and Kenneth Cukier, was a major bestseller in 2013 and 2014. ‘Big data’ was the ‘hottest trend’ in technology and peaked in Google Trends in October 2014. See the graph below.

Big_data_Google_Trend

Not long after taking up their positions, the two executives began negotiations with Knewton, an American adaptive learning company. Knewton’s technology promised to gather colossal amounts of data on students using Knewton-enabled platforms. Its founder, Jose Ferreira, bragged that Knewton had ‘more data about our students than any company has about anybody else about anything […] We literally know everything about what you know and how you learn best, everything’. This data would, it was claimed, enable publishers to multiply, by orders of magnitude, the efficacy of learning materials, allowing publishers, like Macmillan, to provide a truly personalized and optimal offering to learners using their platform.

The contract between Macmillan and Knewton was agreed in May 2013 ‘to build next-generation English Language Learning and Teaching materials’. Perhaps fearful of being left behind in what was seen to be a winner-takes-all market (Pearson already had a financial stake in Knewton), Cambridge University Press duly followed suit, signing a contract with Knewton in September of the same year, in order ‘to create personalized learning experiences in [their] industry-leading ELT digital products’. Things moved fast because, by the start of 2014 when Macmillan’s new catalogue appeared, customers were told to ‘watch out for the ‘Big Tree’’, Macmillans’ new platform, which would be powered by Knewton. ‘The power that will come from this world of adaptive learning takes my breath away’, wrote the international marketing director.

Not a lot happened next, at least outwardly. In the following year, 2015, the Macmillan catalogue again told customers to ‘look out for the Big Tree’ which would offer ‘flexible blended learning models’ which could ‘give teachers much more freedom to choose what they want to do in the class and what they want the students to do online outside of the classroom’.

Macmillan_catalogue_2015

But behind the scenes, everything was going wrong. It had become clear that a linear model of language learning, which was a necessary prerequisite of the Knewton system, simply did not lend itself to anything which would be vaguely marketable in established markets. Skills development, not least the development of so-called 21st century skills, which Macmillan was pushing at the time, would not be facilitated by collecting huge amounts of data and algorithms offering personalized pathways. Even if it could, teachers weren’t ready for it, and the projections for platform adoptions were beginning to seem very over-optimistic. Costs were spiralling. Pushed to meet unrealistic deadlines for a product that was totally ill-conceived in the first place, in-house staff were suffering, and this was made worse by what many staffers thought was a toxic work environment. By the end of 2014 (so, before the copy for the 2015 catalogue had been written), the two executives had gone.

For some time previously, skeptics had been joking that Macmillan had been barking up the wrong tree, and by the time that the 2016 catalogue came out, the ‘Big Tree’ had disappeared without trace. The problem was that so much time and money had been thrown at this particular tree that not enough had been left to develop new course materials (for adults). The whole thing had been a huge cock-up of an extraordinary kind.

Cambridge, too, lost interest in their Knewton connection, but were fortunate (or wise) not to have invested so much energy in it. Language learning was only ever a small part of Knewton’s portfolio, and the company had raised over $180 million in venture capital. Its founder, Jose Ferreira, had been a master of marketing hype, but the business model was not delivering any better than the educational side of things. Pearson pulled out. In December 2016, Ferreira stepped down and was replaced as CEO. The company shifted to ‘selling digital courseware directly to higher-ed institutions and students’ but this could not stop the decline. In September of 2019, Knewton was sold for something under $17 million dollars, with investors taking a hit of over $160 million. My heart bleeds.

It was clear, from very early on (see, for example, my posts from 2014 here and here) that Knewton’s product was little more than what Michael Feldstein called ‘snake oil’. Why and how could so many people fall for it for so long? Why and how will so many people fall for it again in the coming decade, although this time it won’t be ‘big data’ that does the seduction, but AI (which kind of boils down to the same thing)? The former Macmillan executives are still at the game, albeit in new companies and talking a slightly modified talk, and Jose Ferreira (whose new venture has already raised $3.7 million) is promising to revolutionize education with a new start-up which ‘will harness the power of technology to improve both access and quality of education’ (thanks to Audrey Watters for the tip). Investors may be desperate to find places to spread their portfolio, but why do the rest of us lap up the hype? It’s a question to which I will return.

 

 

 

 

In my last post , I looked at the use of digital dictionaries. This post is a sort of companion piece to that one.

I noted in that post that teachers are typically less keen on bilingual dictionaries (preferring monolingual versions) than their students. More generally, it seems that teachers are less keen on any kind of dictionary, preferring their students to attempt to work out the meaning of unknown words from context. Coursebooks invariably promote the skill of guessing meaning from context (also known as ‘lexical inferencing’) and some suggest that dictionary work should be banned from the classroom (Haynes & Baker, 1993, cited in Folse, 2004: 112). Teacher educators usually follow suit. Scott Thornbury, for example, has described guessing from context as ‘probably one of the most useful skills learners can acquire and apply both inside and outside the classroom’ (Thornbury, 2002: 148) and offers a series of steps to train learners in this skill before adding ‘when all else fails, consult a dictionary’. Dictionary use, then, is a last resort.

These steps are fairly well known and a typical example (from Clarke & Nation, 1980, cited in Webb & Nation, 2017: 169) is

1 Determine the part of speech of the unknown word

2 Analyse the immediate context to try to determine the meaning of the unknown word

3 Analyse the wider context to try to determine the meaning of the unknown word

4 Guess the meaning of the unknown word

5 Check the guess against the information that was found in the first four steps

It has been suggested that training in the use of this skill should be started at low levels, so that learners have a general strategy for dealing with unknown words. As proficiency develops, more specific instruction in the recognition and interpretation of context clues can be provided (Walters, 2006: 188). Training may include a demonstration by the teacher using a marked-up text, perhaps followed by ‘think-aloud’ sessions, where learners say out loud the step-by-step process they are going through when inferring meaning. It may also include a progression from, first, cloze exercises to, second, texts where highlighted words are provided with multiple choice definitions to, finally, texts with no support.

Although research has not established what kind of training is likely to be most effective, or whether specific training is more valuable than the provision of lots of opportunities to practise the skill, it would seem that this kind of work is likely to lead to gains in reading comprehension.

Besides the obvious value of this skill in helping learners to decode the meaning of unknown items in a text, it has been hypothesized that learners are ‘more likely to remember the form and meaning of a word when they have inferred its meaning by themselves than when the meaning has been given to them’ (Hulstijn, 1992). This is because memorisation is likely to be enhanced when mental effort has been exercised. The hypothesis was confirmed by Hulstijn in his 1992 study.

Unfortunately, Hulstijn’s study is not, in itself, sufficient evidence to prove the hypothesis. Other studies have shown the opposite. Keith Folse (2004: 112) cites a study by Knight (1994) which ‘found that subjects who used a bilingual dictionary while reading a passage not only learned more words but also achieved higher reading comprehension scores than subjects who did not have a dictionary and therefore had to rely on guessing from context clues’. More recently, Mokhtar & Rawian (2012) entitled their paper ‘Guessing Word Meaning from Context Has Its Limit: Why?’ They argue that ‘though it is not impossible for ESL learners to derive vocabulary meanings from context, guessing strategy by itself does not foster retention of meanings’.

What, then, are the issues here?

  • First of all, Liu and Nation (1985) have estimated that learners ought to know at least 95 per cent of the context words in order to be able to infer meaning from context. Whilst this figure may not be totally accurate, it is clear that because ‘the more words you know, the more you are able to acquire new words’ (Prince, 1996), guessing from context is likely to work better with students at higher levels of proficiency than those with a lower level.
  • Although exercises in coursebooks which require students to guess meaning from context have usually been written in such a way that it is actually possible to do so, ‘such a nicely packaged contextual environment is rare’ in the real world (Folse, 2004: 115). The skill of guessing from context may not be as useful as was previously assumed.
  • There is clearly a risk that learners will guess wrong and, therefore, learn the wrong meaning. Nassaji (2003: 664) found in one study that learners guessed wrong more than half the time.
  • Lastly, it appears that many learners do not like to employ this strategy, believing that using a dictionary is more useful to them and, possibly as a result of this attitude, fail to devote sufficient mental effort to it (Prince, 1996: 480).

Perhaps the most forceful critique of the promotion of guessing meaning from context has come from Catherine Walter and Michael Swan (2009), who referred to it as ‘an alleged ‘skill’’ and considered it, along with skimming and scanning, to be ‘mostly a waste of time’. Scott Thornbury (2006), in a marked departure from his comments (from a number of years earlier) quoted at the start of this post, also questioned the relevance of ‘guessing from context’ activities, arguing that, if students can employ a strategy such as inferring when reading their own language, they can transfer it to another language … so teachers are at risk of teaching their students what they already know.

To summarize, then, we might say that (1) the skill of guessing from context may not be as helpful in the real world as previously imagined, (2) it may not be as useful in acquiring vocabulary items as previously imagined. When a teacher is asked by a student for the meaning of a word in a text, the reflex response of ‘try to work it out from the context’ may also not be as helpful as previously imagined. Translations and / or dictionary advice may well, at times, be more appropriate.

References

Clarke, D.F. & Nation, I.S.P. 1980. ‘Guessing the meanings of words from context: Strategy and techniques.’ System, 8 (3): 211 -220

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Haynes, M. & Baker, I. 1993. ‘American and Chinese readers learning from lexical familiarization in English texts.’ In Huckin, T., Haynes, M. & Coady, J. (Eds.) Second Language Reading and Vocabulary Acquisition. Norwood, NJ.: Ablex. pp. 130 – 152

Hulstijn, J. 1992. ‘Retention of inferred and given word meanings: experiments in incidental vocabulary learning.’ In Arnaud, P. & Bejoint, H. (Eds.) Vocabulary and Applied Linguistics. London: Macmillan Academic and Professional Limited, pp. 113 – 125

Liu, N. & Nation, I. S. P. 1985. ‘Factors affecting guessing vocabulary in context.’ RELC Journal 16 (1): 33–42

Mokhtar, A. A. & Rawian, R. M. 2012. ‘Guessing Word Meaning from Context Has Its Limit: Why?’ International Journal of Linguistics 4 (2): 288 – 305

Nassaji, H. 2003. ‘L2 vocabulary learning from context: Strategies, knowledge sources, and their relationship with success in L2 lexical inferencing.’ TESOL Quarterly, 37(4): 645-670

Prince, P. 1996. ‘Second Language vocabulary Learning: The Role of Context versus Translations as a Function of Proficiency.’ The Modern Language Journal, 80(4): 478-493

Thornbury, S. 2002. How to Teach Vocabulary. Harlow: Pearson Education

Thornbury, S. 2006. The End of Reading? One Stop English,

Walter, C. & Swan, M. 2009. ‘Teaching reading skills: mostly a waste of time?’ In Beaven B. (Ed.) IATEFL 2008 Exeter Conference Selections. Canterbury: IATEFL, pp. 70-71

Walters, J.M. 2004. ‘Teaching the use of context to infer meaning: A longitudinal survey of L1 and L2 vocabulary research.’ Language Teaching, 37(4), pp. 243-252

Walters, J.D. 2006. ‘Methods of teaching inferring meaning from context.’ RELC Journal, 37(2), pp. 176-190

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

 

The most widely-used and popular tool for language learners is the bilingual dictionary (Levy & Steel, 2015), and the first of its kind appeared about 4,000 years ago (2,000 years earlier than the first monolingual dictionaries), offering wordlists in Sumerian and Akkadian (Wheeler, 2013: 9 -11). Technology has come a long way since the clay tablets of the Bronze Age. Good online dictionaries now contain substantially more information (in particular audio recordings) than their print equivalents of a few decades ago. In addition, they are usually quicker and easier to use, more popular, and lead to retention rates that are comparable to, or better than, those achieved with print (Töpel, 2014). The future of dictionaries is likely to be digital, and paper dictionaries may well disappear before very long (Granger, 2012: 2).

English language learners are better served than learners of other languages, and the number of free, online bilingual dictionaries is now enormous. Speakers of less widely-spoken languages may still struggle to find a good quality service, but speakers of, for example, Polish (with approximately 40 million speakers, and a ranking of #33 in the list of the world’s most widely spoken languages) will find over twenty free, online dictionaries to choose from (Lew & Szarowska, 2017). Speakers of languages that are more widely spoken (Chinese, Spanish or Portuguese, for example) will usually find an even greater range. The choice can be bewildering and neither search engine results nor rankings from app stores can be relied on to suggest the product of the highest quality.

Language teachers are not always as enthusiastic about bilingual dictionaries as their learners. Folse (2004: 114 – 120) reports on an informal survey of English teachers which indicated that 11% did not allow any dictionaries in class at all, 37% allowed monolingual dictionaries and only 5% allowed bilingual dictionaries. Other researchers (e.g. Boonmoh & Nesi, 2008), have found a similar situation, with teachers overwhelmingly recommending the use of a monolingual learner’s dictionary: almost all of their students bought one, but the great majority hardly ever used it, preferring instead a digital bilingual version.

Teachers’ preferences for monolingual dictionaries are usually motivated in part by a fear that their students will become too reliant on translation. Whilst this concern remains widespread, much recent suggests that this fear is misguided (Nation, 2013: 424) and that monolingual dictionaries do not actually lead to greater learning gains than their bilingual counterparts. This is, in part, due to the fact that learners typically use these dictionaries in very limited ways – to see if a word exists, check spelling or look up meaning (Harvey & Yuill, 1997). If they made fuller use of the information (about frequency, collocations, syntactic patterns, etc.) on offer, it is likely that learning gains would be greater: ‘it is accessing multiplicity of information that is likely to enhance retention’ (Laufer & Hill, 2000: 77). Without training, however, this is rarely the case.  With lower-level learners, a monolingual learner’s dictionary (even one designed for Elementary level students) can be a frustrating experience, because until they have reached a vocabulary size of around 2,000 – 3,000 words, they will struggle to understand the definitions (Webb & Nation, 2017: 119).

The second reason for teachers’ preference for monolingual dictionaries is that the quality of many bilingual dictionaries is undoubtedly very poor, compared to monolingual learner’s dictionaries such as those produced by Oxford University Press, Cambridge University Press, Longman Pearson, Collins Cobuild, Merriam-Webster and Macmillan, among others. The situation has changed, however, with the rapid growth of bilingualized dictionaries. These contain all the features of a monolingual learner’s dictionary, but also include translations into the learner’s own language. Because of the wealth of information provided by a good bilingualized dictionary, researchers (e.g. Laufer & Hadar, 1997; Chen, 2011) generally consider them preferable to monolingual or normal bilingual dictionaries. They are also popular with learners. Good bilingualized online dictionaries (such as the Oxford Advanced Learner’s English-Chinese Dictionary) are not always free, but many are, and with some language pairings free software can be of a higher quality than services that incur a subscription charge.

If a good bilingualized dictionary is available, there is no longer any compelling reason to use a monolingual learner’s dictionary, unless it contains features which cannot be found elsewhere. In order to compete in a crowded marketplace, many of the established monolingual learner’s dictionaries do precisely that. Examples of good, free online dictionaries include:

Students need help in selecting a dictionary that is right for them. Without this, many end up using as a dictionary a tool such as Google Translate , which, for all its value, is of very limited use as a dictionary. They need to understand that the most appropriate dictionary will depend on what they want to use it for (receptive, reading purposes or productive, writing purposes). Teachers can help in this decision-making process by addressing the issue in class (see the activity below).

In addition to the problem of selecting an appropriate dictionary, it appears that many learners have inadequate dictionary skills (Niitemaa & Pietilä, 2018). In one experiment (Tono, 2011), only one third of the vocabulary searches in a dictionary that were carried out by learners resulted in success. The reasons for failure include focussing on only the first meaning (or translation) of a word that is provided, difficulty in finding the relevant information in long word entries, an inability to find the lemma that is needed, and spelling errors (when they had to type in the word) (Töpel, 2014). As with monolingual dictionaries, learners often only check the meaning of a word in a bilingual dictionary and fail to explore the wider range of information (e.g. collocation, grammatical patterns, example sentences, synonyms) that is available (Laufer & Kimmel, 1997; Laufer & Hill, 2000; Chen, 2010). This information is both useful and may lead to improved retention.

Most learners receive no training in dictionary skills, but would clearly benefit from it. Nation (2013: 333) suggests that at least four or five hours, spread out over a few weeks, would be appropriate. He suggests (ibid: 419 – 421) that training should encourage learners, first, to look closely at the context in which an unknown word is encountered (in order to identify the part of speech, the lemma that needs to be looked up, its possible meaning and to decide whether it is worth looking up at all), then to help learners in finding the relevant entry or sub-entry (by providing information about common dictionary abbreviations (e.g. for parts of speech, style and register)), and, finally, to check this information against the original context.

Two good resource books full of practical activities for dictionary training are available: ‘Dictionary Activities’ by Cindy Leaney (Cambridge: Cambridge University Press, 2007) and ‘Dictionaries’ by Jon Wright (Oxford: Oxford University Press, 1998). Many of the good monolingual dictionaries offer activity guides to promote effective dictionary use and I have suggested a few activities here.

Activity: Understanding a dictionary

Outline: Students explore the use of different symbols in good online dictionaries.

Level: All levels, but not appropriate for very young learners. The activity ‘Choosing a dictionary’ is a good follow-up to this activity.

1 Distribute the worksheet and ask students to follow the instructions.

act_1

2 Check the answers.

Act_1_key

Activity: Choosing a dictionary

Outline: Students explore and evaluate the features of different free, online bilingual dictionaries.

Level: All levels, but not appropriate for very young learners. The text in stage 3 is appropriate for use with levels A2 and B1. For some groups of learners, you may want to adapt (or even translate) the list of features. It may be useful to do the activity ‘Understanding a dictionary’ before this activity.

1 Ask the class which free, online bilingual dictionaries they like to use. Write some of their suggestions on the board.

2 Distribute the list of features. Ask students to work individually and tick the boxes that are important for them. Ask students to work with a partner to compare their answers.

Act_2

3 Give students a list of free, online bilingual (English and the students’ own language) dictionaries. You can use suggestions from the list below, add the suggestions that your students made in stage 1, or add your own ideas. (For many language pairings, better resources are available than those in the list below.) Give the students the following short text and ask the students to use two of these dictionaries to look up the underlined words. Ask the students to decide which dictionary they found most useful and / or easiest to use.

act_2_text

dict_list

4 Conduct feedback with the whole class.

Activity: Getting more out of a dictionary

Outline: Students use a dictionary to help them to correct a text

Level: Levels B1 and B2, but not appropriate for very young learners. For higher levels, a more complex text (with less obvious errors) would be appropriate.

1 Distribute the worksheet below and ask students to follow the instructions.

act_3

2 Check answers with the whole class. Ask how easy it was to find the information in the dictionary that they were using.

Key

When you are reading, you probably only need a dictionary when you don’t know the meaning of a word and you want to look it up. For this, a simple bilingual dictionary is good enough. But when you are writing or editing your writing, you will need something that gives you more information about a word: grammatical patterns, collocations (the words that usually go with other words), how formal the word is, and so on. For this, you will need a better dictionary. Many of the better dictionaries are monolingual (see the box), but there are also some good bilingual ones.

Use one (or more) of the online dictionaries in the box (or a good bilingual dictionary) and make corrections to this text. There are eleven mistakes (they have been underlined) in total.

References

Boonmoh, A. & Nesi, H. 2008. ‘A survey of dictionary use by Thai university staff and students with special reference to pocket electronic dictionaries’ Horizontes de Linguística Aplicada , 6(2), 79 – 90

Chen, Y. 2011. ‘Studies on Bilingualized Dictionaries: The User Perspective’. International Journal of Lexicography, 24 (2): 161–197

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Granger, S. 2012. Electronic Lexicography. Oxford: Oxford University Press

Harvey, K. & Yuill, D. 1997. ‘A study of the use of a monolingual pedagogical dictionary by learners of English engaged in writing’ Applied Linguistics, 51 (1): 253 – 78

Laufer, B. & Hadar, L. 1997. ‘Assessing the effectiveness of monolingual, bilingual and ‘bilingualized’ dictionaries in the comprehension and production of new words’. Modern Language Journal, 81 (2): 189 – 96

Laufer, B. & M. Hill 2000. ‘What lexical information do L2 learners select in a CALL dictionary and how does it affect word retention?’ Language Learning & Technology 3 (2): 58–76

Laufer, B. & Kimmel, M. 1997. ‘Bilingualised dictionaries: How learners really use them’, System, 25 (3): 361 -369

Leaney, C. 2007. Dictionary Activities. Cambridge: Cambridge University Press

Levy, M. and Steel, C. 2015. ‘Language learner perspectives on the functionality and use of electronic language dictionaries’. ReCALL, 27(2): 177–196

Lew, R. & Szarowska, A. 2017. ‘Evaluating online bilingual dictionaries: The case of popular free English-Polish dictionaries’ ReCALL 29(2): 138–159

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Niitemaa, M.-L. & Pietilä, P. 2018. ‘Vocabulary Skills and Online Dictionaries: A Study on EFL Learners’ Receptive Vocabulary Knowledge and Success in Searching Electronic Sources for Information’, Journal of Language Teaching and Research, 9 (3): 453-462

Tono, Y. 2011. ‘Application of eye-tracking in EFL learners’ dictionary look-up process research’, International Journal of Lexicography 24 (1): 124–153

Töpel, A. 2014. ‘Review of research into the use of electronic dictionaries’ in Müller-Spitzer, C. (Ed.) 2014. Using Online Dictionaries. Berlin: De Gruyter, pp. 13 – 54

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

Wheeler, G. 2013. Language Teaching through the Ages. New York: Routledge

Wright, J. 1998. Dictionaries. Oxford: Oxford University Press

Screenshot_20191011-200743_ChromeOver the last week, the Guardian has been running a series of articles on the global corporations that contribute most to climate change and the way that these vested interests lobby against changes to the law which might protect the planet. Beginning in the 1990s, an alliance of fossil fuel and automobile corporations, along with conservative think tanks and politicians, developed a ‘denial machine’ which sought to undermine the scientific consensus on climate change. Between 2003 and 2010, it has been estimated that over $550 million was received from a variety of sources to support this campaign. The Guardian’s current series is an update and reminder of the research into climate change denial that has been carried out in recent years.

In the past, it was easier to trace where the money came from (e.g. ExxonMobil or Koch Industries), but it appears that the cash is now being channelled through foundations like Donors Trust and Donors Capital, who, in turn, pass it on to other foundations and think tanks (see below) that promote the denial of climate change.

The connection between climate change denial and edtech becomes clear when you look at the organisations behind the ‘denial machine’. I have written about some of these organisations before (see this post ) so when I read the reports in the Guardian, there were some familiar names.

Besides their scepticism about climate change, all of the organisations believe that education should be market-driven, free from governmental interference, and characterised by consumer choice. These aims are facilitated by the deployment of educational technology. Here are some examples.

State Policy Network

The State Policy Network (SPN) is an American umbrella organization for a large group of conservative and libertarian think tanks that seek to influence national and global policies. Among other libertarian causes, it opposes climate change regulations and supports the privatisation of education, in particular the expansion of ‘digital education’.

The Cato Institute

The mission of the Cato Institute, a member of the SPN, ‘is to originate, disseminate, and increase understanding of public policies based on the principles of individual liberty, limited government, free markets, and peace. Our vision is to create free, open, and civil societies founded on libertarian principles’. The Institute has said that it had never been in the business of “promoting climate science denial”; it did not dispute human activity’s impact on the climate, but believed it was minimal. Turning to education, it believes that ‘states should institute school choice on a broad scale, moving toward a competitive education market. The only way to transform the system is to break up the long-standing government monopoly and use the dynamics of the market to create innovations, better methods, and new schools’. Innovations and better methods will, of course, be driven by technology.

FreedomWorks

FreedomWorks, another member of the SPN and another conservative and libertarian advocacy group, is widely associated with the Tea Party Movement . Recent posts on its blog have been entitled ‘The Climate Crisis that Wasn’t: Scientists Agree there is “No Cause for Alarm”’, ‘Climate Protesters: If You Want to Save the Planet, You Should Support Capitalism Not Socialism’ and ‘Electric Vehicle Tax Credit: Nothing But Regressive Cronyism’. Its approach to education is equally uncompromising. It seeks to abolish the US Department of Education, describes American schools as ‘failing’, wants market-driven educational provision and absolute parental choice . Technology will play a fundamental role in bringing about the desired changes: ‘just as computers and the Internet have fundamentally reshaped the way we do business, they will also soon reshape education’ .

The Heritage Foundation

The Heritage Foundation, the last of the SPN members that I’ll mention here, is yet another conservative American think tank which rejects the scientific consensus on climate change . Its line on education is neatly summed up in this extract from a blog post by a Heritage senior policy analyst: ‘Virtual or online learning is revolutionizing American education. It has the potential to dramatically expand the educational opportunities of American students, largely overcoming the geographic and demographic restrictions. Virtual learning also has the potential to improve the quality of instruction, while increasing productivity and lowering costs, ultimately reducing the burden on taxpayers‘.

The Institute of Economic Affairs

Just to show that the ‘denial machine’ isn’t an exclusively American phenomenon, I include ‘the UK’s most influential conservative think tank [which] has published at least four books, as well as multiple articles and papers, over two decades suggesting manmade climate change may be uncertain or exaggerated. In recent years the group has focused more on free-market solutions to reducing carbon emissions’ . It is an ‘associate member of the SPN’ . No surprise to discover that a member of the advisory council of the IEA is James Tooley, a close associate of Michael Barber, formerly Chief Education Advisor at Pearson. Tooley’s articles for the IEA include ‘Education without the State’  and ‘Transforming incentives will unleash the power of entrepreneurship in the education sector’ .

The IEA does not disclose its funding, but anyone interested in finding out more should look here ‘Revealed: how the UK’s powerful right-wing think tanks and Conservative MPs work together’ .

Microsoft, Facebook and Google

Let me be clear to start: Microsoft, Facebook and Google are not climate change deniers. However, Facebook and Microsoft are financial backers of the SPN. In a statement, a spokesperson for Microsoft said: “As a large company, Microsoft has great interest in the many policy issues discussed across the country. We have a longstanding record of engaging with a broad assortment of groups on a bipartisan basis, both at the national and local level. In regard to State Policy Network, Microsoft has focused our participation on their technology policy work group because it is valuable forum to hear various perspectives about technology challenges and to share potential solutions” . Google has made substantial contributions to the Competitive Enterprise Institute (a conservative US policy group ‘that was instrumental in convincing the Trump administration to abandon the Paris agreement and has criticised the White House for not dismantling more environmental rules). In the Guardian report, Google ‘defended its contributions, saying that its “collaboration” with organisations such as CEI “does not mean we endorse the organisations’ entire agenda”. “When it comes to regulation of technology, Google has to find friends wherever they can and I think it is wise that the company does not apply litmus tests to who they support,” the source said’ .

You have to wonder what these companies (all of whom support environmental causes in various ways) might consider more important than the future of the planet. Could it be that the libertarian think tanks are important allies in resisting any form of internet governance, in objecting to any constraints on the capture of data?

I was intrigued to learn earlier this year that Oxford University Press had launched a new online test of English language proficiency, called the Oxford Test of English (OTE). At the conference where I first heard about it, I was struck by the fact that the presentation of the OUP sponsored plenary speaker was entitled ‘The Power of Assessment’ and dealt with formative assessment / assessment for learning. Oxford clearly want to position themselves as serious competitors to Pearson and Cambridge English in the testing business.

The brochure for the exam kicks off with a gem of a marketing slogan, ‘Smart. Smarter. SmarTest’ (geddit?), and the next few pages give us all the key information.

Faster and more flexible‘Traditional language proficiency tests’ is presumably intended to refer to the main competition (Pearson and Cambridge English). Cambridge First takes, in total, 3½ hours; the Pearson Test of English Academic takes 3 hours. The OTE takes, in total, 2 hours and 5 minutes. It can be taken, in theory, on any day of the year, although this depends on the individual Approved Test Centres, and, again, in theory, it can be booked as little as 14 days in advance. Results should take only two weeks to arrive. Further flexibility is offered in the way that candidates can pick ’n’ choose which of the four skills they want to have tests, just one or all four, although, as an incentive to go the whole hog, they will only get a ‘Certificate of Proficiency’ if they do all four.

A further incentive to do all four skills at the same time can be found in the price structure. One centre in Spain is currently offering the test for one single skill at Ꞓ41.50, but do the whole lot, and it will only set you back Ꞓ89. For a high-stakes test, this is cheap. In the UK right now, both Cambridge First and Pearson Academic cost in the region of £150, and IELTS a bit more than that. So, faster, more flexible and cheaper … Oxford means business.

Individual experience

The ‘individual experience’ on the next page of the brochure is pure marketing guff. This is, after all, a high-stakes, standardised test. It may be true that ‘the Speaking and Writing modules provide randomly generated tasks, making the overall test different each time’, but there can only be a certain number of permutations. What’s more, in ‘traditional tests’, like Cambridge First, where there is a live examiner or two, an individualised experience is unavoidable.

More interesting to me is the reference to adaptive technology. According to the brochure, ‘The Listening and Reading modules are adaptive, which means the test difficulty adjusts in response to your answers, quickly finding the right level for each test taker. This means that the questions are at just the right level of challenge, making the test shorter and less stressful than traditional proficiency tests’.

My curiosity piqued, I decided to look more closely at the Reading module. I found one practice test online which is the same as the demo that is available at the OTE website . Unfortunately, this example is not adaptive: it is at B1 level. The actual test records scores between 51 and 140, corresponding to levels A2, B1 and B2.

Test scores

The tasks in the Reading module are familiar from coursebooks and other exams: multiple choice, multiple matching and gapped texts.

Reading tasks

According to the exam specifications, these tasks are designed to measure the following skills:

  • Reading to identify main message, purpose, detail
  • Expeditious reading to identify specific information, opinion and attitude
  • Reading to identify text structure, organizational features of a text
  • Reading to identify attitude / opinion, purpose, reference, the meanings of words in context, global meaning

The ability to perform these skills depends, ultimately, on the candidate’s knowledge of vocabulary and grammar, as can be seen in the examples below.

Task 1Task 2

How exactly, I wonder, does the test difficulty adjust in response to the candidate’s answers? The algorithm that is used depends on measures of the difficulty of the test items. If these items are to be made harder or easier, the only significant way that I can see of doing this is by making the key vocabulary lower- or higher-frequency. This, in turn, is only possible if vocabulary and grammar has been tagged as being at a particular level. The most well-known tools for doing this have been developed by Pearson (with the GSE Teacher Toolkit ) and Cambridge English Profile . To the best of my knowledge, Oxford does not yet have a tool of this kind (at least, none that is publicly available). However, the data that OUP will accumulate from OTE scripts and recordings will be invaluable in building a database which their lexicographers can use in developing such a tool.

Even when a data-driven (and numerically precise) tool is available for modifying the difficulty of test items, I still find it hard to understand how the adaptivity will impact on the length or the stress of the reading test. The Reading module is only 35 minutes long and contains only 22 items. Anything that is significantly shorter must surely impact on the reliability of the test.

My conclusion from this is that the adaptive element of the Reading and Listening modules in the OTE is less important to the test itself than it is to building a sophisticated database (not dissimilar to the GSE Teacher Toolkit or Cambridge English Profile). The value of this will be found, in due course, in calibrating all OUP materials. The OTE has already been aligned to the Oxford Online Placement Test (OOPT) and, presumably, coursebooks will soon follow. This, in turn, will facilitate a vertically integrated business model, like Pearson and CUP, where everything from placement test, to coursework, to formative assessment, to final proficiency testing can be on offer.

There has been wide agreement for a long time that one of the most important ways of building the mental lexicon is by having extended exposure to language input through reading and listening. Some researchers (e.g. Krashen, 2008) have gone as far as to say that direct vocabulary instruction serves little purpose, as there is no interface between explicit and implicit knowledge. This remains, however, a minority position, with a majority of researchers agreeing with Barcroft (2015) that deliberate learning plays an important role, even if it is only ‘one step towards knowing the word’ (Nation, 2013: 46).

There is even more agreement when it comes to the differences between deliberate study and extended exposure to language input, in terms of the kinds of learning that takes place. Whilst basic knowledge of lexical items (the pairings of meaning and form) may be developed through deliberate learning (e.g. flash cards), it is suggested that ‘the more ‘contextualized’ aspects of vocabulary (e.g. collocation) cannot be easily taught explicitly and are best learned implicitly through extensive exposure to the use of words in context’ (Schmitt, 2008: 333). In other words, deliberate study may develop lexical breadth, but, for lexical depth, reading and listening are the way to go.

This raises the question of how many times a learner would need to encounter a word (in reading or listening) in order to learn its meaning. Learners may well be developing other aspects of word knowledge at the same time, of course, but a precondition for this is probably that the form-meaning relationship is sorted out. Laufer and Nation (2012: 167) report that ‘researchers seem to agree that with ten exposures, there is some chance of recognizing the meaning of a new word later on’. I’ve always found this figure interesting, but strangely unsatisfactory, unsure of what, precisely, it was actually telling me. Now, with the recent publication of a meta-analysis looking at the effects of repetition on incidental vocabulary learning (Uchihara, Webb & Yanagisawa, 2019), things are becoming a little clearer.

First of all, the number ten is a ballpark figure, rather than a scientifically proven statistic. In their literature review, Uchihara et al. report that ‘the number of encounters necessary to learn words rang[es] from 6, 10, 12, to more than 20 times. That is to say, ‘the number of encounters necessary for learning of vocabulary to occur during meaning-focussed input remains unclear’. If you ask a question to which there is a great variety of answers, there is a strong probability that there is something wrong with the question. That, it would appear, is the case here.

Unsurprisingly, there is, at least, a correlation between repeated encounters of a word and learning, described by Uchihara et al as statistically significant (with a medium effect size). More interesting are the findings about the variables in the studies that were looked at. These included ‘learner variables’ (age and the current size of the learner’s lexicon), ‘treatment variables’ (the amount of spacing between the encounters, listening versus reading, the presence or absence of visual aids, the degree to which learners ‘engage’ with the words they encounter) and ‘methodological variables’ in the design of the research (the kinds of words that are being looked at, word characteristics, the use of non-words, the test format and whether or not learners were told that they were going to be tested).

Here is a selection of the findings:

  • Older learners tend to benefit more from repeated encounters than younger learners.
  • Learners with a smaller vocabulary size tend to benefit more from repeated encounters with L2 words, but this correlation was not statistically significant. ‘Beyond a certain point in vocabulary growth, learners may be able to acquire L2 words in fewer encounters and need not receive as many encounters as learners with smaller vocabulary size’.
  • Learners made greater gains when the repeated exposure took place under massed conditions (e.g. on the same day), rather than under ‘spaced conditions’ (spread out over a longer period of time).
  • Repeated exposure during reading and, to a slightly lesser extent, listening resulted in more gains than reading while listening and viewing.
  • ‘Learners presented with visual information during meaning-focused tasks benefited less from repeated encounters than those who had no access to the information’. This does not mean that visual support is counter-productive: only that the positive effect of repeated encounters is not enhanced by visual support.
  • ‘A significantly larger effect was found for treatments involving no engagement compared to treatment involving engagement’. Again, this does not mean that ‘no engagement’ is better than ‘engagement’: only that the positive effect of repeated encounters is not enhanced by ‘engagement’.
  • ‘The frequency-learning correlation does not seem to increase beyond a range of around 20 encounters with a word’.
  • Experiments using non-words may exaggerate the effect of frequent encounters (i.e. in the real world, with real words, the learning potential of repeated encounters may be less than indicated by some research).
  • Forewarning learners of an upcoming comprehension test had a positive impact on gains in vocabulary learning. Again, this does not mean that teachers should systematically test their students’ comprehension of what they have read.

For me, the most interesting finding was that ‘about 11% of the variance in word learning through meaning-focused input was explained by frequency of encounters’. This means, quite simply, that a wide range of other factors, beyond repeated encounters, will determine the likelihood of learners acquiring vocabulary items from extensive reading and listening. The frequency of word encounters is just one factor among many.

I’m still not sure what the takeaways from this meta-analysis should be, besides the fact that it’s all rather complex. The research does not, in any way, undermine the importance of massive exposure to meaning-focussed input in learning a language. But I will be much more circumspect in my teacher training work about making specific claims concerning the number of times that words need to be encountered before they are ‘learnt’. And I will be even more sceptical about claims for the effectiveness of certain online language learning programs which use algorithms to ensure that words reappear a certain number of times in written, audio and video texts that are presented to learners.

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Laufer, B. & Nation, I.S.P. 2012. Vocabulary. In Gass, S.M. & Mackey, A. (Eds.) The Routledge Handbook of Second Language Acquisition (pp.163 – 176). Abingdon, Oxon.: Routledge

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Krashen, S. 2008. The comprehension hypothesis extended. In T. Piske & M. Young-Scholten (Eds.), Input Matters in SLA (pp.81 – 94). Bristol, UK: Multilingual Matters

Schmitt, N. 2008. Review article: instructed second language vocabulary learning. Language Teaching Research 12 (3): 329 – 363

Uchihara, T., Webb, S. & Yanagisawa, A. 2019. The Effects of Repetition on Incidental Vocabulary Learning: A Meta-Analysis of Correlational Studies. Language Learning, 69 (3): 559 – 599) Available online: https://www.researchgate.net/publication/330774796_The_Effects_of_Repetition_on_Incidental_Vocabulary_Learning_A_Meta-Analysis_of_Correlational_Studies