In my last post , I asked why it is so easy to believe that technology (in particular, technological innovations) will offer solutions to whatever problems exist in language learning and teaching. A simple, but inadequate, answer is that huge amounts of money have been invested in persuading us. Without wanting to detract from the significance of this, it is clearly not sufficient as an explanation. In an attempt to develop my own understanding, I have been turning more and more to the idea of ‘social imaginaries’. In many ways, this is also an attempt to draw together the various interests that I have had since starting this blog.

The Canadian philosopher, Charles Taylor, describes a ‘social imaginary’ as a ‘common understanding that makes possible common practices and a widely shared sense of legitimacy’ (Taylor, 2004: 23). As a social imaginary develops over time, it ‘begins to define the contours of [people’s] worlds and can eventually come to count as the taken-for-granted shape of things, too obvious to mention’ (Taylor, 2004: 29). It is, however, not just a set of ideas or a shared narrative: it is also a set of social practices that enact those understandings, whilst at the same time modifying or solidifying them. The understandings make the practices possible, and it is the practices that largely carry the understanding (Taylor, 2004: 25). In the process, the language we use is filled with new associations and our familiarity with these associations shapes ‘our perceptions and expectations’ (Worster, 1994, quoted in Moore, 2015: 33). A social imaginary, then, is a complex system that is not technological or economic or social or political or educational, but all of these (Urry, 2016). The image of the patterns of an amorphous mass of moving magma (Castoriadis, 1987), flowing through pre-existing channels, but also, at times, striking out along new paths, may offer a helpful metaphor.

Lava flow Hawaii

Technology, of course, plays a key role in contemporary social imaginaries and the term ‘sociotechnical imaginary’ is increasingly widely used. The understandings of the sociotechnical imaginary typically express visions of social progress and a desirable future that is made possible by advances in science and technology (Jasanoff & Kim, 2015: 4). In education, technology is presented as capable of overcoming human failings and the dark ways of the past, of facilitating a ‘pedagogical utopia of natural, authentic teaching and learning’ (Friesen, forthcoming). As such understandings become more widespread and as the educational practices (platforms, apps, etc.) which both shape and are shaped by them become equally widespread, technology has come to be seen as a ‘solution’ to the ‘problem’ of education (Friesen, forthcoming). We need to be careful, however, that having shaped the technology, it does not comes to shape us (see Cobo, 2019, for a further exploration of this idea).

As a way of beginning to try to understand what is going on in edtech in ELT, which is not so very different from what is taking place in education more generally, I have sketched a number of what I consider key components of the shared understandings and the social practices that are related to them. These are closely interlocking pieces and each of them is itself embedded in much broader understandings. They evolve over time and their history can be traced quite easily. Taken together, they do, I think, help us to understand a little more why technology in ELT seems so seductive.

1 The main purpose of English language teaching is to prepare people for the workplace

There has always been a strong connection between learning an additional living language (such as English) and preparing for the world of work. The first modern language schools, such as the Berlitz schools at the end of the 19th century with their native-speaker teachers and monolingual methods, positioned themselves as primarily vocational, in opposition to the kinds of language teaching taking place in schools and universities, which were more broadly humanistic in their objectives. Throughout the 20th century, and especially as English grew as a global language, the public sector, internationally, grew closer to the methods and objectives of the private schools. The idea that learning English might serve other purposes (e.g. cultural enrichment or personal development) has never entirely gone away, as witnessed by the Council of Europe’s list of objectives (including the promotion of mutual understanding and European co-operation, and the overcoming of prejudice and discrimination) in the Common European Framework, but it is often forgotten.

The clarion calls from industry to better align education with labour markets, present and future, grow louder all the time, often finding expression in claims that ‘education is unfit for purpose.’ It is invariably assumed that this purpose is to train students in the appropriate skills to enhance their ‘human capital’ in an increasingly competitive and global market (Lingard & Gale, 2007). Educational agendas are increasingly set by the world of business (bodies like the OECD or the World Economic Forum, corporations like Google or Microsoft, and national governments which share their priorities (see my earlier post about neo-liberalism and solutionism ).

One way in which this shift is reflected in English language teaching is in the growing emphasis that is placed on ‘21st century skills’ in teaching material. Sometimes called ‘life skills’, they are very clearly concerned with the world of work, rather than the rest of our lives. The World Economic Forum’s 2018 Future of Jobs survey lists the soft skills that are considered important in the near future and they include ‘creativity’, ‘critical thinking’, ‘emotional intelligence’ and ‘leadership’. (The fact that the World Economic Forum is made up of a group of huge international corporations (e.g. J.P. Morgan, HSBC, UBS, Johnson & Johnson) with a very dubious track record of embezzlement, fraud, money-laundering and tax evasion has not resulted in much serious, public questioning of the view of education expounded by the WEF.)

Without exception, the ELT publishers have brought these work / life skills into their courses, and the topic is an extremely popular one in ELT blogs and magazines, and at conferences. Two of the four plenaries at this year’s international IATEFL conference are concerned with these skills. Pearson has a wide range of related products, including ‘a four-level competency-based digital course that provides engaging instruction in the essential work and life skills competencies that adult learners need’. Macmillan ELT made ‘life skills’ the central plank of their marketing campaign and approach to product design, and even won a British Council ELTon (see below) Award for ‘Innovation in teacher resources) in 2015 for their ‘life skills’ marketing campaign. Cambridge University Press has developed a ‘Framework for Life Competencies’ which allows these skills to be assigned numerical values.

The point I am making here is not that these skills do not play an important role in contemporary society, nor that English language learners may not benefit from some training in them. The point, rather, is that the assumption that English language learning is mostly concerned with preparation for the workplace has become so widespread that it becomes difficult to think in another way.

2 Technological innovation is good and necessary

The main reason that soft skills are deemed to be so important is that we live in a rapidly-changing world, where the unsubstantiated claim that 85% (or whatever other figure comes to mind) of current jobs won’t exist 10 years from now is so often repeated that it is taken as fact . Whether or not this is true is perhaps less important to those who make the claim than the present and the future that they like to envisage. The claim is, at least, true-ish enough to resonate widely. Since these jobs will disappear, and new ones will emerge, because of technological innovations, education, too, will need to innovate to keep up.

English language teaching has not been slow to celebrate innovation. There were coursebooks called ‘Cutting Edge’ (1998) and ‘Innovations’ (2005), but more recently the connections between innovation and technology have become much stronger. The title of the recent ‘Language Hub’ (2019) was presumably chosen, in part, to conjure up images of digital whizzkids in fashionable co-working start-up spaces. Technological innovation is explicitly promoted in the Special Interest Groups of IATEFL and TESOL. Despite a singular lack of research that unequivocally demonstrates a positive connection between technology and language learning, the former’s objective is ‘to raise awareness among ELT professionals of the power of learning technologies to assist with language learning’. There is a popular annual conference, called InnovateELT , which has the tagline ‘Be Part of the Solution’, and the first problem that this may be a solution to is that our students need to be ‘ready to take on challenging new careers’.

Last, but by no means least, there are the annual British Council ELTon awards  with a special prize for digital innovation. Among the British Council’s own recent innovations are a range of digitally-delivered resources to develop work / life skills among teens.

Again, my intention (here) is not to criticise any of the things mentioned in the preceding paragraphs. It is merely to point to a particular structure of feeling and the way that is enacted and strengthened through material practices like books, social groups, conferences and other events.

3 Technological innovations are best driven by the private sector

The vast majority of people teaching English language around the world work in state-run primary and secondary schools. They are typically not native-speakers of English, they hold national teaching qualifications and they are frequently qualified to teach other subjects in addition to English (often another language). They may or may not self-identify as teachers of ‘ELT’ or ‘EFL’, often seeing themselves more as ‘school teachers’ or ‘language teachers’. People who self-identify as part of the world of ‘ELT or ‘TEFL’ are more likely to be native speakers and to work in the private sector (including private or semi-private language schools, universities (which, in English-speaking countries, are often indistinguishable from private sector institutions), publishing companies, and freelancers). They are more likely to hold international (TEFL) qualifications or higher degrees, and they are less likely to be involved in the teaching of other languages.

The relationship between these two groups is well illustrated by the practice of training days, where groups of a few hundred state-school teachers participate in workshops organised by publishing companies and delivered by ELT specialists. In this context, state-school teachers are essentially in a client role when they are in contact with the world of ‘ELT’ – as buyers or potential buyers of educational products, training or technology.

Technological innovation is invariably driven by the private sector. This may be in the development of technologies (platforms, apps and so on), in the promotion of technology (through training days and conference sponsorship, for example), or in training for technology (with consultancy companies like ELTjam or The Consultants-E, which offer a wide range of technologically oriented ‘solutions’).

As in education more generally, it is believed that the private sector can be more agile and more efficient than state-run bodies, which continue to decline in importance in educational policy-setting. When state-run bodies are involved in technological innovation in education, it is normal for them to work in partnership with the private sector.

4 Accountability is crucial

Efficacy is vital. It makes no sense to innovate unless the innovations improve something, but for us to know this, we need a way to measure it. In a previous post , I looked at Pearson’s ‘Asking More: the Path to Efficacy’ by CEO John Fallon (who will be stepping down later this year). Efficacy in education, says Fallon, is ‘making a measurable impact on someone’s life through learning’. ‘Measurable’ is the key word, because, as Fallon claims, ‘it is increasingly possible to determine what works and what doesn’t in education, just as in healthcare.’ We need ‘a relentless focus’ on ‘the learning outcomes we deliver’ because it is these outcomes that can be measured in ‘a systematic, evidence-based fashion’. Measurement, of course, is all the easier when education is delivered online, ‘real-time learner data’ can be captured, and the power of analytics can be deployed.

Data is evidence, and it’s as easy to agree on the importance of evidence as it is hard to decide on (1) what it is evidence of, and (2) what kind of data is most valuable. While those questions remain largely unanswered, the data-capturing imperative invades more and more domains of the educational world.

English language teaching is becoming data-obsessed. From language scales, like Pearson’s Global Scale of English to scales of teacher competences, from numerically-oriented formative assessment practices (such as those used on many LMSs) to the reporting of effect sizes in meta-analyses (such as those used by John Hattie and colleagues), datafication in ELT accelerates non-stop.

The scales and frameworks are all problematic in a number of ways (see, for example, this post on ‘The Mismeasure of Language’) but they have undeniably shaped the way that we are able to think. Of course, we need measurable outcomes! If, for the present, there are privacy and security issues, it is to be hoped that technology will find solutions to them, too.

REFERENCES

Castoriadis, C. (1987). The Imaginary Institution of Society. Cambridge: Polity Press.

Cobo, C. (2019). I Accept the Terms and Conditions. Montevideo: International Development Research Centre / Center for Research Ceibal Foundation. https://adaptivelearninginelt.files.wordpress.com/2020/01/41acf-cd84b5_7a6e74f4592c460b8f34d1f69f2d5068.pdf

Friesen, N. (forthcoming) The technological imaginary in education, or: Myth and enlightenment in ‘Personalized Learning’. In M. Stocchetti (Ed.) The Digital Age and its Discontents. University of Helsinki Press. Available at https://www.academia.edu/37960891/The_Technological_Imaginary_in_Education_or_Myth_and_Enlightenment_in_Personalized_Learning_

Jasanoff, S. & Kim, S.-H. (2015). Dreamscapes of Modernity. Chicago: University of Chicago Press.

Lingard, B. & Gale, T. (2007). The emergent structure of feeling: what does it mean for critical educational studies and research?, Critical Studies in Education, 48:1, pp. 1-23

Moore, J. W. (2015). Capitalism in the Web of Life. London: Verso.

Robbins, K. & Webster, F. (1989]. The Technical Fix. Basingstoke: Macmillan Education.

Taylor, C. (2014). Modern Social Imaginaries. Durham, NC: Duke University Press.

Urry, J. (2016). What is the Future? Cambridge: Polity Press.

 

At the start of the last decade, ELT publishers were worried, Macmillan among them. The financial crash of 2008 led to serious difficulties, not least in their key Spanish market. In 2011, Macmillan’s parent company was fined ₤11.3 million for corruption. Under new ownership, restructuring was a constant. At the same time, Macmillan ELT was getting ready to move from its Oxford headquarters to new premises in London, a move which would inevitably lead to the loss of a sizable proportion of its staff. On top of that, Macmillan, like the other ELT publishers, was aware that changes in the digital landscape (the first 3G iPhone had appeared in June 2008 and wifi access was spreading rapidly around the world) meant that they needed to shift away from the old print-based model. With her finger on the pulse, Caroline Moore, wrote an article in October 2010 entitled ‘No Future? The English Language Teaching Coursebook in the Digital Age’ . The publication (at the start of the decade) and runaway success of the online ‘Touchstone’ course, from arch-rivals, Cambridge University Press, meant that Macmillan needed to change fast if they were to avoid being left behind.

Macmillan already had a platform, Campus, but it was generally recognised as being clunky and outdated, and something new was needed. In the summer of 2012, Macmillan brought in two new executives – people who could talk the ‘creative-disruption’ talk and who believed in the power of big data to shake up English language teaching and publishing. At the time, the idea of big data was beginning to reach public consciousness and ‘Big Data: A Revolution that Will Transform how We Live, Work, and Think’ by Viktor Mayer-Schönberger and Kenneth Cukier, was a major bestseller in 2013 and 2014. ‘Big data’ was the ‘hottest trend’ in technology and peaked in Google Trends in October 2014. See the graph below.

Big_data_Google_Trend

Not long after taking up their positions, the two executives began negotiations with Knewton, an American adaptive learning company. Knewton’s technology promised to gather colossal amounts of data on students using Knewton-enabled platforms. Its founder, Jose Ferreira, bragged that Knewton had ‘more data about our students than any company has about anybody else about anything […] We literally know everything about what you know and how you learn best, everything’. This data would, it was claimed, enable publishers to multiply, by orders of magnitude, the efficacy of learning materials, allowing publishers, like Macmillan, to provide a truly personalized and optimal offering to learners using their platform.

The contract between Macmillan and Knewton was agreed in May 2013 ‘to build next-generation English Language Learning and Teaching materials’. Perhaps fearful of being left behind in what was seen to be a winner-takes-all market (Pearson already had a financial stake in Knewton), Cambridge University Press duly followed suit, signing a contract with Knewton in September of the same year, in order ‘to create personalized learning experiences in [their] industry-leading ELT digital products’. Things moved fast because, by the start of 2014 when Macmillan’s new catalogue appeared, customers were told to ‘watch out for the ‘Big Tree’’, Macmillans’ new platform, which would be powered by Knewton. ‘The power that will come from this world of adaptive learning takes my breath away’, wrote the international marketing director.

Not a lot happened next, at least outwardly. In the following year, 2015, the Macmillan catalogue again told customers to ‘look out for the Big Tree’ which would offer ‘flexible blended learning models’ which could ‘give teachers much more freedom to choose what they want to do in the class and what they want the students to do online outside of the classroom’.

Macmillan_catalogue_2015

But behind the scenes, everything was going wrong. It had become clear that a linear model of language learning, which was a necessary prerequisite of the Knewton system, simply did not lend itself to anything which would be vaguely marketable in established markets. Skills development, not least the development of so-called 21st century skills, which Macmillan was pushing at the time, would not be facilitated by collecting huge amounts of data and algorithms offering personalized pathways. Even if it could, teachers weren’t ready for it, and the projections for platform adoptions were beginning to seem very over-optimistic. Costs were spiralling. Pushed to meet unrealistic deadlines for a product that was totally ill-conceived in the first place, in-house staff were suffering, and this was made worse by what many staffers thought was a toxic work environment. By the end of 2014 (so, before the copy for the 2015 catalogue had been written), the two executives had gone.

For some time previously, skeptics had been joking that Macmillan had been barking up the wrong tree, and by the time that the 2016 catalogue came out, the ‘Big Tree’ had disappeared without trace. The problem was that so much time and money had been thrown at this particular tree that not enough had been left to develop new course materials (for adults). The whole thing had been a huge cock-up of an extraordinary kind.

Cambridge, too, lost interest in their Knewton connection, but were fortunate (or wise) not to have invested so much energy in it. Language learning was only ever a small part of Knewton’s portfolio, and the company had raised over $180 million in venture capital. Its founder, Jose Ferreira, had been a master of marketing hype, but the business model was not delivering any better than the educational side of things. Pearson pulled out. In December 2016, Ferreira stepped down and was replaced as CEO. The company shifted to ‘selling digital courseware directly to higher-ed institutions and students’ but this could not stop the decline. In September of 2019, Knewton was sold for something under $17 million dollars, with investors taking a hit of over $160 million. My heart bleeds.

It was clear, from very early on (see, for example, my posts from 2014 here and here) that Knewton’s product was little more than what Michael Feldstein called ‘snake oil’. Why and how could so many people fall for it for so long? Why and how will so many people fall for it again in the coming decade, although this time it won’t be ‘big data’ that does the seduction, but AI (which kind of boils down to the same thing)? The former Macmillan executives are still at the game, albeit in new companies and talking a slightly modified talk, and Jose Ferreira (whose new venture has already raised $3.7 million) is promising to revolutionize education with a new start-up which ‘will harness the power of technology to improve both access and quality of education’ (thanks to Audrey Watters for the tip). Investors may be desperate to find places to spread their portfolio, but why do the rest of us lap up the hype? It’s a question to which I will return.

 

 

 

 

In my last post , I looked at the use of digital dictionaries. This post is a sort of companion piece to that one.

I noted in that post that teachers are typically less keen on bilingual dictionaries (preferring monolingual versions) than their students. More generally, it seems that teachers are less keen on any kind of dictionary, preferring their students to attempt to work out the meaning of unknown words from context. Coursebooks invariably promote the skill of guessing meaning from context (also known as ‘lexical inferencing’) and some suggest that dictionary work should be banned from the classroom (Haynes & Baker, 1993, cited in Folse, 2004: 112). Teacher educators usually follow suit. Scott Thornbury, for example, has described guessing from context as ‘probably one of the most useful skills learners can acquire and apply both inside and outside the classroom’ (Thornbury, 2002: 148) and offers a series of steps to train learners in this skill before adding ‘when all else fails, consult a dictionary’. Dictionary use, then, is a last resort.

These steps are fairly well known and a typical example (from Clarke & Nation, 1980, cited in Webb & Nation, 2017: 169) is

1 Determine the part of speech of the unknown word

2 Analyse the immediate context to try to determine the meaning of the unknown word

3 Analyse the wider context to try to determine the meaning of the unknown word

4 Guess the meaning of the unknown word

5 Check the guess against the information that was found in the first four steps

It has been suggested that training in the use of this skill should be started at low levels, so that learners have a general strategy for dealing with unknown words. As proficiency develops, more specific instruction in the recognition and interpretation of context clues can be provided (Walters, 2006: 188). Training may include a demonstration by the teacher using a marked-up text, perhaps followed by ‘think-aloud’ sessions, where learners say out loud the step-by-step process they are going through when inferring meaning. It may also include a progression from, first, cloze exercises to, second, texts where highlighted words are provided with multiple choice definitions to, finally, texts with no support.

Although research has not established what kind of training is likely to be most effective, or whether specific training is more valuable than the provision of lots of opportunities to practise the skill, it would seem that this kind of work is likely to lead to gains in reading comprehension.

Besides the obvious value of this skill in helping learners to decode the meaning of unknown items in a text, it has been hypothesized that learners are ‘more likely to remember the form and meaning of a word when they have inferred its meaning by themselves than when the meaning has been given to them’ (Hulstijn, 1992). This is because memorisation is likely to be enhanced when mental effort has been exercised. The hypothesis was confirmed by Hulstijn in his 1992 study.

Unfortunately, Hulstijn’s study is not, in itself, sufficient evidence to prove the hypothesis. Other studies have shown the opposite. Keith Folse (2004: 112) cites a study by Knight (1994) which ‘found that subjects who used a bilingual dictionary while reading a passage not only learned more words but also achieved higher reading comprehension scores than subjects who did not have a dictionary and therefore had to rely on guessing from context clues’. More recently, Mokhtar & Rawian (2012) entitled their paper ‘Guessing Word Meaning from Context Has Its Limit: Why?’ They argue that ‘though it is not impossible for ESL learners to derive vocabulary meanings from context, guessing strategy by itself does not foster retention of meanings’.

What, then, are the issues here?

  • First of all, Liu and Nation (1985) have estimated that learners ought to know at least 95 per cent of the context words in order to be able to infer meaning from context. Whilst this figure may not be totally accurate, it is clear that because ‘the more words you know, the more you are able to acquire new words’ (Prince, 1996), guessing from context is likely to work better with students at higher levels of proficiency than those with a lower level.
  • Although exercises in coursebooks which require students to guess meaning from context have usually been written in such a way that it is actually possible to do so, ‘such a nicely packaged contextual environment is rare’ in the real world (Folse, 2004: 115). The skill of guessing from context may not be as useful as was previously assumed.
  • There is clearly a risk that learners will guess wrong and, therefore, learn the wrong meaning. Nassaji (2003: 664) found in one study that learners guessed wrong more than half the time.
  • Lastly, it appears that many learners do not like to employ this strategy, believing that using a dictionary is more useful to them and, possibly as a result of this attitude, fail to devote sufficient mental effort to it (Prince, 1996: 480).

Perhaps the most forceful critique of the promotion of guessing meaning from context has come from Catherine Walter and Michael Swan (2009), who referred to it as ‘an alleged ‘skill’’ and considered it, along with skimming and scanning, to be ‘mostly a waste of time’. Scott Thornbury (2006), in a marked departure from his comments (from a number of years earlier) quoted at the start of this post, also questioned the relevance of ‘guessing from context’ activities, arguing that, if students can employ a strategy such as inferring when reading their own language, they can transfer it to another language … so teachers are at risk of teaching their students what they already know.

To summarize, then, we might say that (1) the skill of guessing from context may not be as helpful in the real world as previously imagined, (2) it may not be as useful in acquiring vocabulary items as previously imagined. When a teacher is asked by a student for the meaning of a word in a text, the reflex response of ‘try to work it out from the context’ may also not be as helpful as previously imagined. Translations and / or dictionary advice may well, at times, be more appropriate.

References

Clarke, D.F. & Nation, I.S.P. 1980. ‘Guessing the meanings of words from context: Strategy and techniques.’ System, 8 (3): 211 -220

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Haynes, M. & Baker, I. 1993. ‘American and Chinese readers learning from lexical familiarization in English texts.’ In Huckin, T., Haynes, M. & Coady, J. (Eds.) Second Language Reading and Vocabulary Acquisition. Norwood, NJ.: Ablex. pp. 130 – 152

Hulstijn, J. 1992. ‘Retention of inferred and given word meanings: experiments in incidental vocabulary learning.’ In Arnaud, P. & Bejoint, H. (Eds.) Vocabulary and Applied Linguistics. London: Macmillan Academic and Professional Limited, pp. 113 – 125

Liu, N. & Nation, I. S. P. 1985. ‘Factors affecting guessing vocabulary in context.’ RELC Journal 16 (1): 33–42

Mokhtar, A. A. & Rawian, R. M. 2012. ‘Guessing Word Meaning from Context Has Its Limit: Why?’ International Journal of Linguistics 4 (2): 288 – 305

Nassaji, H. 2003. ‘L2 vocabulary learning from context: Strategies, knowledge sources, and their relationship with success in L2 lexical inferencing.’ TESOL Quarterly, 37(4): 645-670

Prince, P. 1996. ‘Second Language vocabulary Learning: The Role of Context versus Translations as a Function of Proficiency.’ The Modern Language Journal, 80(4): 478-493

Thornbury, S. 2002. How to Teach Vocabulary. Harlow: Pearson Education

Thornbury, S. 2006. The End of Reading? One Stop English,

Walter, C. & Swan, M. 2009. ‘Teaching reading skills: mostly a waste of time?’ In Beaven B. (Ed.) IATEFL 2008 Exeter Conference Selections. Canterbury: IATEFL, pp. 70-71

Walters, J.M. 2004. ‘Teaching the use of context to infer meaning: A longitudinal survey of L1 and L2 vocabulary research.’ Language Teaching, 37(4), pp. 243-252

Walters, J.D. 2006. ‘Methods of teaching inferring meaning from context.’ RELC Journal, 37(2), pp. 176-190

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

 

The most widely-used and popular tool for language learners is the bilingual dictionary (Levy & Steel, 2015), and the first of its kind appeared about 4,000 years ago (2,000 years earlier than the first monolingual dictionaries), offering wordlists in Sumerian and Akkadian (Wheeler, 2013: 9 -11). Technology has come a long way since the clay tablets of the Bronze Age. Good online dictionaries now contain substantially more information (in particular audio recordings) than their print equivalents of a few decades ago. In addition, they are usually quicker and easier to use, more popular, and lead to retention rates that are comparable to, or better than, those achieved with print (Töpel, 2014). The future of dictionaries is likely to be digital, and paper dictionaries may well disappear before very long (Granger, 2012: 2).

English language learners are better served than learners of other languages, and the number of free, online bilingual dictionaries is now enormous. Speakers of less widely-spoken languages may still struggle to find a good quality service, but speakers of, for example, Polish (with approximately 40 million speakers, and a ranking of #33 in the list of the world’s most widely spoken languages) will find over twenty free, online dictionaries to choose from (Lew & Szarowska, 2017). Speakers of languages that are more widely spoken (Chinese, Spanish or Portuguese, for example) will usually find an even greater range. The choice can be bewildering and neither search engine results nor rankings from app stores can be relied on to suggest the product of the highest quality.

Language teachers are not always as enthusiastic about bilingual dictionaries as their learners. Folse (2004: 114 – 120) reports on an informal survey of English teachers which indicated that 11% did not allow any dictionaries in class at all, 37% allowed monolingual dictionaries and only 5% allowed bilingual dictionaries. Other researchers (e.g. Boonmoh & Nesi, 2008), have found a similar situation, with teachers overwhelmingly recommending the use of a monolingual learner’s dictionary: almost all of their students bought one, but the great majority hardly ever used it, preferring instead a digital bilingual version.

Teachers’ preferences for monolingual dictionaries are usually motivated in part by a fear that their students will become too reliant on translation. Whilst this concern remains widespread, much recent suggests that this fear is misguided (Nation, 2013: 424) and that monolingual dictionaries do not actually lead to greater learning gains than their bilingual counterparts. This is, in part, due to the fact that learners typically use these dictionaries in very limited ways – to see if a word exists, check spelling or look up meaning (Harvey & Yuill, 1997). If they made fuller use of the information (about frequency, collocations, syntactic patterns, etc.) on offer, it is likely that learning gains would be greater: ‘it is accessing multiplicity of information that is likely to enhance retention’ (Laufer & Hill, 2000: 77). Without training, however, this is rarely the case.  With lower-level learners, a monolingual learner’s dictionary (even one designed for Elementary level students) can be a frustrating experience, because until they have reached a vocabulary size of around 2,000 – 3,000 words, they will struggle to understand the definitions (Webb & Nation, 2017: 119).

The second reason for teachers’ preference for monolingual dictionaries is that the quality of many bilingual dictionaries is undoubtedly very poor, compared to monolingual learner’s dictionaries such as those produced by Oxford University Press, Cambridge University Press, Longman Pearson, Collins Cobuild, Merriam-Webster and Macmillan, among others. The situation has changed, however, with the rapid growth of bilingualized dictionaries. These contain all the features of a monolingual learner’s dictionary, but also include translations into the learner’s own language. Because of the wealth of information provided by a good bilingualized dictionary, researchers (e.g. Laufer & Hadar, 1997; Chen, 2011) generally consider them preferable to monolingual or normal bilingual dictionaries. They are also popular with learners. Good bilingualized online dictionaries (such as the Oxford Advanced Learner’s English-Chinese Dictionary) are not always free, but many are, and with some language pairings free software can be of a higher quality than services that incur a subscription charge.

If a good bilingualized dictionary is available, there is no longer any compelling reason to use a monolingual learner’s dictionary, unless it contains features which cannot be found elsewhere. In order to compete in a crowded marketplace, many of the established monolingual learner’s dictionaries do precisely that. Examples of good, free online dictionaries include:

Students need help in selecting a dictionary that is right for them. Without this, many end up using as a dictionary a tool such as Google Translate , which, for all its value, is of very limited use as a dictionary. They need to understand that the most appropriate dictionary will depend on what they want to use it for (receptive, reading purposes or productive, writing purposes). Teachers can help in this decision-making process by addressing the issue in class (see the activity below).

In addition to the problem of selecting an appropriate dictionary, it appears that many learners have inadequate dictionary skills (Niitemaa & Pietilä, 2018). In one experiment (Tono, 2011), only one third of the vocabulary searches in a dictionary that were carried out by learners resulted in success. The reasons for failure include focussing on only the first meaning (or translation) of a word that is provided, difficulty in finding the relevant information in long word entries, an inability to find the lemma that is needed, and spelling errors (when they had to type in the word) (Töpel, 2014). As with monolingual dictionaries, learners often only check the meaning of a word in a bilingual dictionary and fail to explore the wider range of information (e.g. collocation, grammatical patterns, example sentences, synonyms) that is available (Laufer & Kimmel, 1997; Laufer & Hill, 2000; Chen, 2010). This information is both useful and may lead to improved retention.

Most learners receive no training in dictionary skills, but would clearly benefit from it. Nation (2013: 333) suggests that at least four or five hours, spread out over a few weeks, would be appropriate. He suggests (ibid: 419 – 421) that training should encourage learners, first, to look closely at the context in which an unknown word is encountered (in order to identify the part of speech, the lemma that needs to be looked up, its possible meaning and to decide whether it is worth looking up at all), then to help learners in finding the relevant entry or sub-entry (by providing information about common dictionary abbreviations (e.g. for parts of speech, style and register)), and, finally, to check this information against the original context.

Two good resource books full of practical activities for dictionary training are available: ‘Dictionary Activities’ by Cindy Leaney (Cambridge: Cambridge University Press, 2007) and ‘Dictionaries’ by Jon Wright (Oxford: Oxford University Press, 1998). Many of the good monolingual dictionaries offer activity guides to promote effective dictionary use and I have suggested a few activities here.

Activity: Understanding a dictionary

Outline: Students explore the use of different symbols in good online dictionaries.

Level: All levels, but not appropriate for very young learners. The activity ‘Choosing a dictionary’ is a good follow-up to this activity.

1 Distribute the worksheet and ask students to follow the instructions.

act_1

2 Check the answers.

Act_1_key

Activity: Choosing a dictionary

Outline: Students explore and evaluate the features of different free, online bilingual dictionaries.

Level: All levels, but not appropriate for very young learners. The text in stage 3 is appropriate for use with levels A2 and B1. For some groups of learners, you may want to adapt (or even translate) the list of features. It may be useful to do the activity ‘Understanding a dictionary’ before this activity.

1 Ask the class which free, online bilingual dictionaries they like to use. Write some of their suggestions on the board.

2 Distribute the list of features. Ask students to work individually and tick the boxes that are important for them. Ask students to work with a partner to compare their answers.

Act_2

3 Give students a list of free, online bilingual (English and the students’ own language) dictionaries. You can use suggestions from the list below, add the suggestions that your students made in stage 1, or add your own ideas. (For many language pairings, better resources are available than those in the list below.) Give the students the following short text and ask the students to use two of these dictionaries to look up the underlined words. Ask the students to decide which dictionary they found most useful and / or easiest to use.

act_2_text

dict_list

4 Conduct feedback with the whole class.

Activity: Getting more out of a dictionary

Outline: Students use a dictionary to help them to correct a text

Level: Levels B1 and B2, but not appropriate for very young learners. For higher levels, a more complex text (with less obvious errors) would be appropriate.

1 Distribute the worksheet below and ask students to follow the instructions.

act_3

2 Check answers with the whole class. Ask how easy it was to find the information in the dictionary that they were using.

Key

When you are reading, you probably only need a dictionary when you don’t know the meaning of a word and you want to look it up. For this, a simple bilingual dictionary is good enough. But when you are writing or editing your writing, you will need something that gives you more information about a word: grammatical patterns, collocations (the words that usually go with other words), how formal the word is, and so on. For this, you will need a better dictionary. Many of the better dictionaries are monolingual (see the box), but there are also some good bilingual ones.

Use one (or more) of the online dictionaries in the box (or a good bilingual dictionary) and make corrections to this text. There are eleven mistakes (they have been underlined) in total.

References

Boonmoh, A. & Nesi, H. 2008. ‘A survey of dictionary use by Thai university staff and students with special reference to pocket electronic dictionaries’ Horizontes de Linguística Aplicada , 6(2), 79 – 90

Chen, Y. 2011. ‘Studies on Bilingualized Dictionaries: The User Perspective’. International Journal of Lexicography, 24 (2): 161–197

Folse, K. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Granger, S. 2012. Electronic Lexicography. Oxford: Oxford University Press

Harvey, K. & Yuill, D. 1997. ‘A study of the use of a monolingual pedagogical dictionary by learners of English engaged in writing’ Applied Linguistics, 51 (1): 253 – 78

Laufer, B. & Hadar, L. 1997. ‘Assessing the effectiveness of monolingual, bilingual and ‘bilingualized’ dictionaries in the comprehension and production of new words’. Modern Language Journal, 81 (2): 189 – 96

Laufer, B. & M. Hill 2000. ‘What lexical information do L2 learners select in a CALL dictionary and how does it affect word retention?’ Language Learning & Technology 3 (2): 58–76

Laufer, B. & Kimmel, M. 1997. ‘Bilingualised dictionaries: How learners really use them’, System, 25 (3): 361 -369

Leaney, C. 2007. Dictionary Activities. Cambridge: Cambridge University Press

Levy, M. and Steel, C. 2015. ‘Language learner perspectives on the functionality and use of electronic language dictionaries’. ReCALL, 27(2): 177–196

Lew, R. & Szarowska, A. 2017. ‘Evaluating online bilingual dictionaries: The case of popular free English-Polish dictionaries’ ReCALL 29(2): 138–159

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Niitemaa, M.-L. & Pietilä, P. 2018. ‘Vocabulary Skills and Online Dictionaries: A Study on EFL Learners’ Receptive Vocabulary Knowledge and Success in Searching Electronic Sources for Information’, Journal of Language Teaching and Research, 9 (3): 453-462

Tono, Y. 2011. ‘Application of eye-tracking in EFL learners’ dictionary look-up process research’, International Journal of Lexicography 24 (1): 124–153

Töpel, A. 2014. ‘Review of research into the use of electronic dictionaries’ in Müller-Spitzer, C. (Ed.) 2014. Using Online Dictionaries. Berlin: De Gruyter, pp. 13 – 54

Webb, S. & Nation, P. 2017. How Vocabulary is Learned. Oxford: Oxford University Press

Wheeler, G. 2013. Language Teaching through the Ages. New York: Routledge

Wright, J. 1998. Dictionaries. Oxford: Oxford University Press

Screenshot_20191011-200743_ChromeOver the last week, the Guardian has been running a series of articles on the global corporations that contribute most to climate change and the way that these vested interests lobby against changes to the law which might protect the planet. Beginning in the 1990s, an alliance of fossil fuel and automobile corporations, along with conservative think tanks and politicians, developed a ‘denial machine’ which sought to undermine the scientific consensus on climate change. Between 2003 and 2010, it has been estimated that over $550 million was received from a variety of sources to support this campaign. The Guardian’s current series is an update and reminder of the research into climate change denial that has been carried out in recent years.

In the past, it was easier to trace where the money came from (e.g. ExxonMobil or Koch Industries), but it appears that the cash is now being channelled through foundations like Donors Trust and Donors Capital, who, in turn, pass it on to other foundations and think tanks (see below) that promote the denial of climate change.

The connection between climate change denial and edtech becomes clear when you look at the organisations behind the ‘denial machine’. I have written about some of these organisations before (see this post ) so when I read the reports in the Guardian, there were some familiar names.

Besides their scepticism about climate change, all of the organisations believe that education should be market-driven, free from governmental interference, and characterised by consumer choice. These aims are facilitated by the deployment of educational technology. Here are some examples.

State Policy Network

The State Policy Network (SPN) is an American umbrella organization for a large group of conservative and libertarian think tanks that seek to influence national and global policies. Among other libertarian causes, it opposes climate change regulations and supports the privatisation of education, in particular the expansion of ‘digital education’.

The Cato Institute

The mission of the Cato Institute, a member of the SPN, ‘is to originate, disseminate, and increase understanding of public policies based on the principles of individual liberty, limited government, free markets, and peace. Our vision is to create free, open, and civil societies founded on libertarian principles’. The Institute has said that it had never been in the business of “promoting climate science denial”; it did not dispute human activity’s impact on the climate, but believed it was minimal. Turning to education, it believes that ‘states should institute school choice on a broad scale, moving toward a competitive education market. The only way to transform the system is to break up the long-standing government monopoly and use the dynamics of the market to create innovations, better methods, and new schools’. Innovations and better methods will, of course, be driven by technology.

FreedomWorks

FreedomWorks, another member of the SPN and another conservative and libertarian advocacy group, is widely associated with the Tea Party Movement . Recent posts on its blog have been entitled ‘The Climate Crisis that Wasn’t: Scientists Agree there is “No Cause for Alarm”’, ‘Climate Protesters: If You Want to Save the Planet, You Should Support Capitalism Not Socialism’ and ‘Electric Vehicle Tax Credit: Nothing But Regressive Cronyism’. Its approach to education is equally uncompromising. It seeks to abolish the US Department of Education, describes American schools as ‘failing’, wants market-driven educational provision and absolute parental choice . Technology will play a fundamental role in bringing about the desired changes: ‘just as computers and the Internet have fundamentally reshaped the way we do business, they will also soon reshape education’ .

The Heritage Foundation

The Heritage Foundation, the last of the SPN members that I’ll mention here, is yet another conservative American think tank which rejects the scientific consensus on climate change . Its line on education is neatly summed up in this extract from a blog post by a Heritage senior policy analyst: ‘Virtual or online learning is revolutionizing American education. It has the potential to dramatically expand the educational opportunities of American students, largely overcoming the geographic and demographic restrictions. Virtual learning also has the potential to improve the quality of instruction, while increasing productivity and lowering costs, ultimately reducing the burden on taxpayers‘.

The Institute of Economic Affairs

Just to show that the ‘denial machine’ isn’t an exclusively American phenomenon, I include ‘the UK’s most influential conservative think tank [which] has published at least four books, as well as multiple articles and papers, over two decades suggesting manmade climate change may be uncertain or exaggerated. In recent years the group has focused more on free-market solutions to reducing carbon emissions’ . It is an ‘associate member of the SPN’ . No surprise to discover that a member of the advisory council of the IEA is James Tooley, a close associate of Michael Barber, formerly Chief Education Advisor at Pearson. Tooley’s articles for the IEA include ‘Education without the State’  and ‘Transforming incentives will unleash the power of entrepreneurship in the education sector’ .

The IEA does not disclose its funding, but anyone interested in finding out more should look here ‘Revealed: how the UK’s powerful right-wing think tanks and Conservative MPs work together’ .

Microsoft, Facebook and Google

Let me be clear to start: Microsoft, Facebook and Google are not climate change deniers. However, Facebook and Microsoft are financial backers of the SPN. In a statement, a spokesperson for Microsoft said: “As a large company, Microsoft has great interest in the many policy issues discussed across the country. We have a longstanding record of engaging with a broad assortment of groups on a bipartisan basis, both at the national and local level. In regard to State Policy Network, Microsoft has focused our participation on their technology policy work group because it is valuable forum to hear various perspectives about technology challenges and to share potential solutions” . Google has made substantial contributions to the Competitive Enterprise Institute (a conservative US policy group ‘that was instrumental in convincing the Trump administration to abandon the Paris agreement and has criticised the White House for not dismantling more environmental rules). In the Guardian report, Google ‘defended its contributions, saying that its “collaboration” with organisations such as CEI “does not mean we endorse the organisations’ entire agenda”. “When it comes to regulation of technology, Google has to find friends wherever they can and I think it is wise that the company does not apply litmus tests to who they support,” the source said’ .

You have to wonder what these companies (all of whom support environmental causes in various ways) might consider more important than the future of the planet. Could it be that the libertarian think tanks are important allies in resisting any form of internet governance, in objecting to any constraints on the capture of data?

I was intrigued to learn earlier this year that Oxford University Press had launched a new online test of English language proficiency, called the Oxford Test of English (OTE). At the conference where I first heard about it, I was struck by the fact that the presentation of the OUP sponsored plenary speaker was entitled ‘The Power of Assessment’ and dealt with formative assessment / assessment for learning. Oxford clearly want to position themselves as serious competitors to Pearson and Cambridge English in the testing business.

The brochure for the exam kicks off with a gem of a marketing slogan, ‘Smart. Smarter. SmarTest’ (geddit?), and the next few pages give us all the key information.

Faster and more flexible‘Traditional language proficiency tests’ is presumably intended to refer to the main competition (Pearson and Cambridge English). Cambridge First takes, in total, 3½ hours; the Pearson Test of English Academic takes 3 hours. The OTE takes, in total, 2 hours and 5 minutes. It can be taken, in theory, on any day of the year, although this depends on the individual Approved Test Centres, and, again, in theory, it can be booked as little as 14 days in advance. Results should take only two weeks to arrive. Further flexibility is offered in the way that candidates can pick ’n’ choose which of the four skills they want to have tests, just one or all four, although, as an incentive to go the whole hog, they will only get a ‘Certificate of Proficiency’ if they do all four.

A further incentive to do all four skills at the same time can be found in the price structure. One centre in Spain is currently offering the test for one single skill at Ꞓ41.50, but do the whole lot, and it will only set you back Ꞓ89. For a high-stakes test, this is cheap. In the UK right now, both Cambridge First and Pearson Academic cost in the region of £150, and IELTS a bit more than that. So, faster, more flexible and cheaper … Oxford means business.

Individual experience

The ‘individual experience’ on the next page of the brochure is pure marketing guff. This is, after all, a high-stakes, standardised test. It may be true that ‘the Speaking and Writing modules provide randomly generated tasks, making the overall test different each time’, but there can only be a certain number of permutations. What’s more, in ‘traditional tests’, like Cambridge First, where there is a live examiner or two, an individualised experience is unavoidable.

More interesting to me is the reference to adaptive technology. According to the brochure, ‘The Listening and Reading modules are adaptive, which means the test difficulty adjusts in response to your answers, quickly finding the right level for each test taker. This means that the questions are at just the right level of challenge, making the test shorter and less stressful than traditional proficiency tests’.

My curiosity piqued, I decided to look more closely at the Reading module. I found one practice test online which is the same as the demo that is available at the OTE website . Unfortunately, this example is not adaptive: it is at B1 level. The actual test records scores between 51 and 140, corresponding to levels A2, B1 and B2.

Test scores

The tasks in the Reading module are familiar from coursebooks and other exams: multiple choice, multiple matching and gapped texts.

Reading tasks

According to the exam specifications, these tasks are designed to measure the following skills:

  • Reading to identify main message, purpose, detail
  • Expeditious reading to identify specific information, opinion and attitude
  • Reading to identify text structure, organizational features of a text
  • Reading to identify attitude / opinion, purpose, reference, the meanings of words in context, global meaning

The ability to perform these skills depends, ultimately, on the candidate’s knowledge of vocabulary and grammar, as can be seen in the examples below.

Task 1Task 2

How exactly, I wonder, does the test difficulty adjust in response to the candidate’s answers? The algorithm that is used depends on measures of the difficulty of the test items. If these items are to be made harder or easier, the only significant way that I can see of doing this is by making the key vocabulary lower- or higher-frequency. This, in turn, is only possible if vocabulary and grammar has been tagged as being at a particular level. The most well-known tools for doing this have been developed by Pearson (with the GSE Teacher Toolkit ) and Cambridge English Profile . To the best of my knowledge, Oxford does not yet have a tool of this kind (at least, none that is publicly available). However, the data that OUP will accumulate from OTE scripts and recordings will be invaluable in building a database which their lexicographers can use in developing such a tool.

Even when a data-driven (and numerically precise) tool is available for modifying the difficulty of test items, I still find it hard to understand how the adaptivity will impact on the length or the stress of the reading test. The Reading module is only 35 minutes long and contains only 22 items. Anything that is significantly shorter must surely impact on the reliability of the test.

My conclusion from this is that the adaptive element of the Reading and Listening modules in the OTE is less important to the test itself than it is to building a sophisticated database (not dissimilar to the GSE Teacher Toolkit or Cambridge English Profile). The value of this will be found, in due course, in calibrating all OUP materials. The OTE has already been aligned to the Oxford Online Placement Test (OOPT) and, presumably, coursebooks will soon follow. This, in turn, will facilitate a vertically integrated business model, like Pearson and CUP, where everything from placement test, to coursework, to formative assessment, to final proficiency testing can be on offer.

There has been wide agreement for a long time that one of the most important ways of building the mental lexicon is by having extended exposure to language input through reading and listening. Some researchers (e.g. Krashen, 2008) have gone as far as to say that direct vocabulary instruction serves little purpose, as there is no interface between explicit and implicit knowledge. This remains, however, a minority position, with a majority of researchers agreeing with Barcroft (2015) that deliberate learning plays an important role, even if it is only ‘one step towards knowing the word’ (Nation, 2013: 46).

There is even more agreement when it comes to the differences between deliberate study and extended exposure to language input, in terms of the kinds of learning that takes place. Whilst basic knowledge of lexical items (the pairings of meaning and form) may be developed through deliberate learning (e.g. flash cards), it is suggested that ‘the more ‘contextualized’ aspects of vocabulary (e.g. collocation) cannot be easily taught explicitly and are best learned implicitly through extensive exposure to the use of words in context’ (Schmitt, 2008: 333). In other words, deliberate study may develop lexical breadth, but, for lexical depth, reading and listening are the way to go.

This raises the question of how many times a learner would need to encounter a word (in reading or listening) in order to learn its meaning. Learners may well be developing other aspects of word knowledge at the same time, of course, but a precondition for this is probably that the form-meaning relationship is sorted out. Laufer and Nation (2012: 167) report that ‘researchers seem to agree that with ten exposures, there is some chance of recognizing the meaning of a new word later on’. I’ve always found this figure interesting, but strangely unsatisfactory, unsure of what, precisely, it was actually telling me. Now, with the recent publication of a meta-analysis looking at the effects of repetition on incidental vocabulary learning (Uchihara, Webb & Yanagisawa, 2019), things are becoming a little clearer.

First of all, the number ten is a ballpark figure, rather than a scientifically proven statistic. In their literature review, Uchihara et al. report that ‘the number of encounters necessary to learn words rang[es] from 6, 10, 12, to more than 20 times. That is to say, ‘the number of encounters necessary for learning of vocabulary to occur during meaning-focussed input remains unclear’. If you ask a question to which there is a great variety of answers, there is a strong probability that there is something wrong with the question. That, it would appear, is the case here.

Unsurprisingly, there is, at least, a correlation between repeated encounters of a word and learning, described by Uchihara et al as statistically significant (with a medium effect size). More interesting are the findings about the variables in the studies that were looked at. These included ‘learner variables’ (age and the current size of the learner’s lexicon), ‘treatment variables’ (the amount of spacing between the encounters, listening versus reading, the presence or absence of visual aids, the degree to which learners ‘engage’ with the words they encounter) and ‘methodological variables’ in the design of the research (the kinds of words that are being looked at, word characteristics, the use of non-words, the test format and whether or not learners were told that they were going to be tested).

Here is a selection of the findings:

  • Older learners tend to benefit more from repeated encounters than younger learners.
  • Learners with a smaller vocabulary size tend to benefit more from repeated encounters with L2 words, but this correlation was not statistically significant. ‘Beyond a certain point in vocabulary growth, learners may be able to acquire L2 words in fewer encounters and need not receive as many encounters as learners with smaller vocabulary size’.
  • Learners made greater gains when the repeated exposure took place under massed conditions (e.g. on the same day), rather than under ‘spaced conditions’ (spread out over a longer period of time).
  • Repeated exposure during reading and, to a slightly lesser extent, listening resulted in more gains than reading while listening and viewing.
  • ‘Learners presented with visual information during meaning-focused tasks benefited less from repeated encounters than those who had no access to the information’. This does not mean that visual support is counter-productive: only that the positive effect of repeated encounters is not enhanced by visual support.
  • ‘A significantly larger effect was found for treatments involving no engagement compared to treatment involving engagement’. Again, this does not mean that ‘no engagement’ is better than ‘engagement’: only that the positive effect of repeated encounters is not enhanced by ‘engagement’.
  • ‘The frequency-learning correlation does not seem to increase beyond a range of around 20 encounters with a word’.
  • Experiments using non-words may exaggerate the effect of frequent encounters (i.e. in the real world, with real words, the learning potential of repeated encounters may be less than indicated by some research).
  • Forewarning learners of an upcoming comprehension test had a positive impact on gains in vocabulary learning. Again, this does not mean that teachers should systematically test their students’ comprehension of what they have read.

For me, the most interesting finding was that ‘about 11% of the variance in word learning through meaning-focused input was explained by frequency of encounters’. This means, quite simply, that a wide range of other factors, beyond repeated encounters, will determine the likelihood of learners acquiring vocabulary items from extensive reading and listening. The frequency of word encounters is just one factor among many.

I’m still not sure what the takeaways from this meta-analysis should be, besides the fact that it’s all rather complex. The research does not, in any way, undermine the importance of massive exposure to meaning-focussed input in learning a language. But I will be much more circumspect in my teacher training work about making specific claims concerning the number of times that words need to be encountered before they are ‘learnt’. And I will be even more sceptical about claims for the effectiveness of certain online language learning programs which use algorithms to ensure that words reappear a certain number of times in written, audio and video texts that are presented to learners.

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Laufer, B. & Nation, I.S.P. 2012. Vocabulary. In Gass, S.M. & Mackey, A. (Eds.) The Routledge Handbook of Second Language Acquisition (pp.163 – 176). Abingdon, Oxon.: Routledge

Nation, I.S.P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Krashen, S. 2008. The comprehension hypothesis extended. In T. Piske & M. Young-Scholten (Eds.), Input Matters in SLA (pp.81 – 94). Bristol, UK: Multilingual Matters

Schmitt, N. 2008. Review article: instructed second language vocabulary learning. Language Teaching Research 12 (3): 329 – 363

Uchihara, T., Webb, S. & Yanagisawa, A. 2019. The Effects of Repetition on Incidental Vocabulary Learning: A Meta-Analysis of Correlational Studies. Language Learning, 69 (3): 559 – 599) Available online: https://www.researchgate.net/publication/330774796_The_Effects_of_Repetition_on_Incidental_Vocabulary_Learning_A_Meta-Analysis_of_Correlational_Studies

Back in the middle of the last century, the first interactive machines for language teaching appeared. Previously, there had been phonograph discs and wire recorders (Ornstein, 1968: 401), but these had never really taken off. This time, things were different. Buoyed by a belief in the power of technology, along with the need (following the Soviet Union’s successful Sputnik programme) to demonstrate the pre-eminence of the United States’ technological expertise, the interactive teaching machines that were used in programmed instruction promised to revolutionize language learning (Valdman, 1968: 1). From coast to coast, ‘tremors of excitement ran through professional journals and conferences and department meetings’ (Kennedy, 1967: 871). The new technology was driven by hard science, supported and promoted by the one of the most well-known and respected psychologists and public intellectuals of the day (Skinner, 1961).

In classrooms, the machines acted as powerfully effective triggers in generating situational interest (Hidi & Renninger, 2006). Even more exciting than the mechanical teaching machines were the computers that were appearing on the scene. ‘Lick’ Licklider, a pioneer in interactive computing at the Advanced Research Projects Agency in Arlington, Virginia, developed an automated drill routine for learning German by hooking up a computer, two typewriters, an oscilloscope and a light pen (Noble, 1991: 124). Students loved it, and some would ‘go on and on, learning German words until they were forced by scheduling to cease their efforts’. Researchers called the seductive nature of the technology ‘stimulus trapping’, and Licklider hoped that ‘before [the student] gets out from under the control of the computer’s incentives, [they] will learn enough German words’ (Noble, 1991: 125).

With many of the developed economies of the world facing a critical shortage of teachers, ‘an urgent pedagogical emergency’ (Hof, 2018), the new approach was considered to be extremely efficient and could equalise opportunity in schools across the country. It was ‘here to stay: [it] appears destined to make progress that could well go beyond the fondest dreams of its originators […] an entire industry is just coming into being and significant sales and profits should not be too long in coming’ (Kozlowski, 1961: 47).

Unfortunately, however, researchers and entrepreneurs had massively underestimated the significance of novelty effects. The triggered situational interest of the machines did not lead to intrinsic individual motivation. Students quickly tired of, and eventually came to dislike, programmed instruction and the machines that delivered it (McDonald et al.: 2005: 89). What’s more, the machines were expensive and ‘research studies conducted on its effectiveness showed that the differences in achievement did not constantly or substantially favour programmed instruction over conventional instruction (Saettler, 2004: 303). Newer technologies, with better ‘stimulus trapping’, were appearing. Programmed instruction lost its backing and disappeared, leaving as traces only its interest in clearly defined learning objectives, the measurement of learning outcomes and a concern with the efficiency of learning approaches.

Hot on the heels of programmed instruction came the language laboratory. Futuristic in appearance, not entirely unlike the deck of the starship USS Enterprise which launched at around the same time, language labs captured the public imagination and promised to explore the final frontiers of language learning. As with the earlier teaching machines, students were initially enthusiastic. Even today, when language labs are introduced into contexts where they may be perceived as new technology, they can lead to high levels of initial motivation (e.g. Ramganesh & Janaki, 2017).

Given the huge investments into these labs, it’s unfortunate that initial interest waned fast. By 1969, many of these rooms had turned into ‘“electronic graveyards,” sitting empty and unused, or perhaps somewhat glorified study halls to which students grudgingly repair to don headphones, turn down the volume, and prepare the next period’s history or English lesson, unmolested by any member of the foreign language faculty’ (Turner, 1969: 1, quoted in Roby, 2003: 527). ‘Many second language students shudder[ed] at the thought of entering into the bowels of the “language laboratory” to practice and perfect the acoustical aerobics of proper pronunciation skills. Visions of sterile white-walled, windowless rooms, filled with endless bolted-down rows of claustrophobic metal carrels, and overseen by a humorless, lab director, evoke[d] fear in the hearts of even the most stout-hearted prospective second-language learners (Wiley, 1990: 44).

By the turn of this century, language labs had mostly gone, consigned to oblivion by the appearance of yet newer technology: the internet, laptops and smartphones. Education had been on the brink of being transformed through new learning technologies for decades (Laurillard, 2008: 1), but this time it really was different. It wasn’t just one technology that had appeared, but a whole slew of them: ‘artificial intelligence, learning analytics, predictive analytics, adaptive learning software, school management software, learning management systems (LMS), school clouds. No school was without these and other technologies branded as ‘superintelligent’ by the late 2020s’ (Macgilchrist et al., 2019). The hardware, especially phones, was ubiquitous and, therefore, free. Unlike teaching machines and language laboratories, students were used to using the technology and expected to use their devices in their studies.

A barrage of publicity, mostly paid for by the industry, surrounded the new technologies. These would ‘meet the demands of Generation Z’, the new generation of students, now cast as consumers, who ‘were accustomed to personalizing everything’.  AR, VR, interactive whiteboards, digital projectors and so on made it easier to ‘create engaging, interactive experiences’. The ‘New Age’ technologies made learning fun and easy,  ‘bringing enthusiasm among the students, improving student engagement, enriching the teaching process, and bringing liveliness in the classroom’. On top of that, they allowed huge amounts of data to be captured and sold, whilst tracking progress and attendance. In any case, resistance to digital technology, said more than one language teaching expert, was pointless (Styring, 2015).slide

At the same time, technology companies increasingly took on ‘central roles as advisors to national governments and local districts on educational futures’ and public educational institutions came to be ‘regarded by many as dispensable or even harmful’ (Macgilchrist et al., 2019).

But, as it turned out, the students of Generation Z were not as uniformly enthusiastic about the new technology as had been assumed, and resistance to digital, personalized delivery in education was not long in coming. In November 2018, high school students at Brooklyn’s Secondary School for Journalism staged a walkout in protest at their school’s use of Summit Learning, a web-based platform promoting personalized learning developed by Facebook. They complained that the platform resulted in coursework requiring students to spend much of their day in front of a computer screen, that made it easy to cheat by looking up answers online, and that some of their teachers didn’t have the proper training for the curriculum (Leskin, 2018). Besides, their school was in a deplorable state of disrepair, especially the toilets. There were similar protests in Kansas, where students staged sit-ins, supported by their parents, one of whom complained that ‘we’re allowing the computers to teach and the kids all looked like zombies’ before pulling his son out of the school (Bowles, 2019). In Pennsylvania and Connecticut, some schools stopped using Summit Learning altogether, following protests.

But the resistance did not last. Protesters were accused of being nostalgic conservatives and educationalists kept largely quiet, fearful of losing their funding from the Chan Zuckerberg Initiative (Facebook) and other philanthro-capitalists. The provision of training in grit, growth mindset, positive psychology and mindfulness (also promoted by the technology companies) was ramped up, and eventually the disaffected students became more quiescent. Before long, the data-intensive, personalized approach, relying on the tools, services and data storage of particular platforms had become ‘baked in’ to educational systems around the world (Moore, 2018: 211). There was no going back (except for small numbers of ultra-privileged students in a few private institutions).

By the middle of the century (2155), most students, of all ages, studied with interactive screens in the comfort of their homes. Algorithmically-driven content, with personalized, adaptive tests had become the norm, but the technology occasionally went wrong, leading to some frustration. One day, two young children discovered a book in their attic. Made of paper with yellow, crinkly pages, where ‘the words stood still instead of moving the way they were supposed to’. The book recounted the experience of schools in the distant past, where ‘all the kids from the neighbourhood came’, sitting in the same room with a human teacher, studying the same things ‘so they could help one another on the homework and talk about it’. Margie, the younger of the children at 11 years old, was engrossed in the book when she received a nudge from her personalized learning platform to return to her studies. But Margie was reluctant to go back to her fractions. She ‘was thinking about how the kids must have loved it in the old days. She was thinking about the fun they had’ (Asimov, 1951).

References

Asimov, I. 1951. The Fun They Had. Accessed September 20, 2019. http://web1.nbed.nb.ca/sites/ASD-S/1820/J%20Johnston/Isaac%20Asimov%20-%20The%20fun%20they%20had.pdf

Bowles, N. 2019. ‘Silicon Valley Came to Kansas Schools. That Started a Rebellion’ The New York Times, April 21. Accessed September 20, 2019. https://www.nytimes.com/2019/04/21/technology/silicon-valley-kansas-schools.html

Hidi, S. & Renninger, K.A. 2006. ‘The Four-Phase Model of Interest Development’ Educational Psychologist, 41 (2), 111 – 127

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47 (4): 445-465

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 (6): 47 – 54

Laurillard, D. 2008. Digital Technologies and their Role in Achieving our Ambitions for Education. London: Institute for Education.

Leskin, P. 2018. ‘Students in Brooklyn protest their school’s use of a Zuckerberg-backed online curriculum that Facebook engineers helped build’ Business Insider, 12.11.18 Accessed 20 September 2019. https://www.businessinsider.de/summit-learning-school-curriculum-funded-by-zuckerberg-faces-backlash-brooklyn-2018-11?r=US&IR=T

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 (2): 84 – 98

Macgilchrist, F., Allert, H. & Bruch, A. 2019. ‚Students and society in the 2020s. Three future ‘histories’ of education and technology’. Learning, Media and Technology, https://www.tandfonline.com/doi/full/10.1080/17439884.2019.1656235 )

Moore, M. 2018. Democracy Hacked. London: Oneworld

Noble, D. D. 1991. The Classroom Arsenal. London: The Falmer Press

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 (7), 401 – 410

Ramganesh, E. & Janaki, S. 2017. ‘Attitude of College Teachers towards the Utilization of Language Laboratories for Learning English’ Asian Journal of Social Science Studies; Vol. 2 (1): 103 – 109

Roby, W.B. 2003. ‘Technology in the service of foreign language teaching: The case of the language laboratory’ In D. Jonassen (ed.), Handbook of Research on Educational Communications and Technology, 2nd ed.: 523 – 541. Mahwah, NJ.: Lawrence Erlbaum Associates

Saettler, P. 2004. The Evolution of American Educational Technology. Greenwich, Conn.: Information Age Publishing

Skinner, B. F. 1961. ‘Teaching Machines’ Scientific American, 205(5), 90-107

Styring, J. 2015. Engaging Generation Z. Cambridge English webinar 2015 https://www.youtube.com/watch?time_continue=4&v=XCxl4TqgQZA

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14.

Wiley, P. D. 1990. ‘Language labs for 1990: User-friendly, expandable and affordable’. Media & Methods, 27(1), 44–47)

jenny-holzer-untitled-protect-me-from-what-i-want-text-displayed-in-times-square-nyc-1982

Jenny Holzer, Protect me from what I want

Digital flashcard systems like Memrise and Quizlet remain among the most popular language learning apps. Their focus is on the deliberate learning of vocabulary, an approach described by Paul Nation (Nation, 2005) as ‘one of the least efficient ways of developing learners’ vocabulary knowledge but nonetheless […] an important part of a well-balanced vocabulary programme’. The deliberate teaching of vocabulary also features prominently in most platform-based language courses.

For both vocabulary apps and bigger courses, the lexical items need to be organised into sets for the purposes of both presentation and practice. A common way of doing this, especially at lower levels, is to group the items into semantic clusters (sets with a classifying superordinate, like body part, and a collection of example hyponyms, like arm, leg, head, chest, etc.).

The problem, as Keith Folse puts it, is that such clusters ‘are not only unhelpful, they actually hinder vocabulary retention’ (Folse, 2004: 52). Evidence for this claim may be found in Higa (1963), Tinkham (1993, 1997), Waring (1997), Erten & Tekin (2008) and Barcroft (2015), to cite just some of the more well-known studies. The results, says Folse, ‘are clear and, I think, very conclusive’. The explanation that is usually given draws on interference theory: semantic similarity may lead to confusion (e.g. when learners mix up days of the week, colour words or adjectives to describe personality).

It appears, then, to be long past time to get rid of semantic clusters in language teaching. Well … not so fast. First of all, although most of the research sides with Folse, not all of it does. Nakata and Suzuki (2019) in their survey of more recent research found that results were more mixed. They found one study which suggested that there was no significant difference in learning outcomes between presenting words in semantic clusters and semantically unrelated groups (Ishii, 2015). And they found four studies (Hashemi & Gowdasiaei, 2005; Hoshino, 2010; Schneider, Healy, & Bourne, 1998, 2002) where semantic clusters had a positive effect on learning.

Nakata and Suzuki (2019) offer three reasons why semantic clustering might facilitate vocabulary learning: it (1) ‘reflects how vocabulary is stored in the mental lexicon, (2) introduces desirable difficulty, and (3) leads to extra attention, effort, or engagement from learners’. Finkbeiner and Nicol (2003) make a similar point: ‘although learning semantically related words appears to take longer, it is possible that words learned under these conditions are learned better for the purpose of actual language use (e.g., the retrieval of vocabulary during production and comprehension). That is, the very difficulty associated with learning the new labels may make them easier to process once they are learned’. Both pairs of researcher cited in this paragraph conclude that semantic clusters are best avoided, but their discussion of the possible benefits of this clustering is a recognition that the research (for reasons which I will come on to) cannot lead to categorical conclusions.

The problem, as so often with pedagogical research, is the gap between research conditions and real-world classrooms. Before looking at this in a little more detail, one relatively uncontentious observation can be made. Even those scholars who advise against semantic clustering (e.g. Papathanasiou, 2009), acknowledge that the situation is complicated by other factors, especially the level of proficiency of the learner and whether or not one or more of the hyponyms are known to the learner. At higher levels (when it is more likely that one or more of the hyponyms are already, even partially, known), semantic clustering is not a problem. I would add that, on the whole at higher levels, the deliberate learning of vocabulary is even less efficient than at lower levels and should be an increasingly small part of a well-balanced vocabulary programme.

So, why is there a problem drawing practical conclusions from the research? In order to have any scientific validity at all, researchers need to control a large number of variable. They need, for example, to be sure that learners do not already know any of the items that are being presented. The only practical way of doing this is to present sets of invented words, and this is what most of the research does (Sarioğlu, 2018). These artificial words solve one problem, but create others, the most significant of which is item difficulty. Many factors impact on item difficulty, and these include word frequency (obviously a problem with invented words), word length, pronounceability and the familiarity and length of the corresponding item in L1. None of the studies which support the abandonment of semantic clusters have controlled all of these variables (Nakata and Suzuki, 2019). Indeed, it would be practically impossible to do so. Learning pseudo-words is a very different proposition to learning real words, which a learner may subsequently encounter or want to use.

Take, for example, the days of the week. It’s quite common for learners to muddle up Tuesday and Thursday. The reason for this is not just semantic similarity (Tuesday and Monday are less frequently confused). They are also very similar in terms of both spelling and pronunciation. They are ‘synforms’ (see Laufer, 2009), which, like semantic clusters, can hinder learning of new items. But, now imagine a French-speaking learner of Spanish studying the days of the week. It is much less likely that martes and jueves will be muddled, because of their similarity to the French words mardi and jeudi. There would appear to be no good reason not to teach the complete set of days of the week to a learner like this. All other things being equal, it is probably a good idea to avoid semantic clusters, but all other things are very rarely equal.

Again, in an attempt to control for variables, researchers typically present the target items in isolation (in bilingual pairings). But, again, the real world does not normally conform to this condition. Leo Sellivan (2014) suggests that semantic clusters (e.g. colours) are taught as part of collocations. He gives the examples of red dress, green grass and black coffee, and points out that the alliterative patterns can serve as mnemonic devices which will facilitate learning. The suggestion is, I think, a very good one, but, more generally, it’s worth noting that the presentation of lexical items in both digital flashcards and platform courses is rarely context-free. Contexts will inevitably impact on learning and may well obviate the risks of semantic clustering.

Finally, this kind of research typically gives participants very restricted time to memorize the target words (Sarioğlu, 2018) and they are tested in very controlled recall tasks. In the case of language platform courses, practice of target items is usually spread out over a much longer period of time, with a variety of exposure opportunities (in controlled practice tasks, exposure in texts, personalisation tasks, revision exercises, etc.) both within and across learning units. In this light, it is not unreasonable to argue that laboratory-type research offers only limited insights into what should happen in the real world of language learning and teaching. The choice of learning items, the way they are presented and practised, and the variety of activities in the well-balanced vocabulary programme are probably all more significant than the question of whether items are organised into semantic clusters.

Although semantic clusters are quite common in language learning materials, much more common are thematic clusters (i.e. groups of words which are topically related, but include a variety of parts of speech (see below). Researchers, it seems, have no problem with this way of organising lexical sets. By way of conclusion, here’s an extract from a recent book:

‘Introducing new words together that are similar in meaning (synonyms), such as scared and frightened, or forms (synforms), like contain and maintain, can be confusing, and students are less likely to remember them. This problem is known as ‘interference’. One way to avoid this is to choose words that are around the same theme, but which include a mix of different parts of speech. For example, if you want to focus on vocabulary to talk about feelings, instead of picking lots of adjectives (happy, sad, angry, scared, frightened, nervous, etc.) include some verbs (feel, enjoy, complain) and some nouns (fun, feelings, nerves). This also encourages students to use a variety of structures with the vocabulary.’ (Hughes, et al., 2015: 25)

 

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Erten, I.H., & Tekin, M. 2008. Effects on vocabulary acquisition of presenting new words in semantic sets versus semantically-unrelated sets. System, 36 (3), 407-422

Finkbeiner, M. & Nicol, J. 2003. Semantic category effects in second language word learning. Applied Psycholinguistics 24 (2003), 369–383

Folse, K. S. 2004. Vocabulary Myths. Ann Arbor: University of Michigan Press

Hashemi, M.R., & Gowdasiaei, F. 2005. An attribute-treatment interaction study: Lexical-set versus semantically-unrelated vocabulary instruction. RELC Journal, 36 (3), 341-361

Higa, M. 1963. Interference effects of intralist word relationships in verbal learning. Journal of Verbal Learning and Verbal Behavior, 2, 170-175

Hoshino, Y. 2010. The categorical facilitation effects on L2 vocabulary learning in a classroom setting. RELC Journal, 41, 301–312

Hughes, S. H., Mauchline, F. & Moore, J. 2019. ETpedia Vocabulary. Shoreham-by-Sea: Pavilion Publishing and Media

Ishii, T. 2015. Semantic connection or visual connection: Investigating the true source of confusion. Language Teaching Research, 19, 712–722

Laufer, B. 2009. The concept of ‘synforms’ (similar lexical forms) in vocabulary acquisition. Language and Education, 2 (2): 113 – 132

Nakata, T. & Suzuki, Y. 2019. Effects Of Massing And Spacing On The Learning Of Semantically Related And Unrelated Words. Studies in Second Language Acquisition 41 (2), 287 – 311

Nation, P. 2005. Teaching Vocabulary. Asian EFL Journal. http://www.asian-efl-journal.com/sept_05_pn.pdf

Papathanasiou, E. 2009. An investigation of two ways of presenting vocabulary. ELT Journal 63 (4), 313 – 322

Sarioğlu, M. 2018. A Matter of Controversy: Teaching New L2 Words in Semantic Sets or Unrelated Sets. Journal of Higher Education and Science Vol 8 / 1: 172 – 183

Schneider, V. I., Healy, A. F., & Bourne, L. E. 1998. Contextual interference effects in foreign language vocabulary acquisition and retention. In Healy, A. F. & Bourne, L. E. (Eds.), Foreign language learning: Psycholinguistic studies on training and retention (pp. 77–90). Mahwah, NJ: Erlbaum

Schneider, V. I., Healy, A. F., & Bourne, L. E. 2002. What is learned under difficult conditions is hard to forget: Contextual interference effects in foreign vocabulary acquisition, retention, and transfer. Journal of Memory and Language, 46, 419–440

Sellivan, L. 2014. Horizontal alternatives to vertical lists. Blog post: http://leoxicon.blogspot.com/2014/03/horizontal-alternatives-to-vertical.html

Tinkham, T. 1993. The effect of semantic clustering on the learning of second language vocabulary. System 21 (3), 371-380.

Tinkham, T. 1997. The effects of semantic and thematic clustering on the learning of a second language vocabulary. Second Language Research, 13 (2),138-163

Waring, R. 1997. The negative effects of learning words in semantic sets: a replication. System, 25 (2), 261 – 274

At a recent ELT conference, a plenary presentation entitled ‘Getting it right with edtech’ (sponsored by a vendor of – increasingly digital – ELT products) began with the speaker suggesting that technology was basically neutral, that what you do with educational technology matters far more than the nature of the technology itself. The idea that technology is a ‘neutral tool’ has a long pedigree and often accompanies exhortations to embrace edtech in one form or another (see for example Fox, 2001). It is an idea that is supported by no less a luminary than Chomsky, who, in a 2012 video entitled ‘The Purpose of Education’ (Chomsky, 2012), said that:

As far as […] technology […] and education is concerned, technology is basically neutral. It’s kind of like a hammer. I mean, […] the hammer doesn’t care whether you use it to build a house or whether a torturer uses it to crush somebody’s skull; a hammer can do either. The same with the modern technology; say, the Internet, and so on.

Womans hammerAlthough hammers are not usually classic examples of educational technology, they are worthy of a short discussion. Hammers come in all shapes and sizes and when you choose one, you need to consider its head weight (usually between 16 and 20 ounces), the length of the handle, the shape of the grip, etc. Appropriate specifications for particular hammering tasks have been calculated in great detail. The data on which these specifications is based on an analysis of the hand size and upper body strength of the typical user. The typical user is a man, and the typical hammer has been designed for a man. The average male hand length is 177.9 mm, that of the average woman is 10 mm shorter (Wang & Cai, 2017). Women typically have about half the upper body strength of men (Miller et al., 1993). It’s possible, but not easy to find hammers designed for women (they are referred to as ‘Ladies hammers’ on Amazon). They have a much lighter head weight, a shorter handle length, and many come in pink or floral designs. Hammers, in other words, are far from neutral: they are highly gendered.

Moving closer to educational purposes and ways in which we might ‘get it right with edtech’, it is useful to look at the smart phone. The average size of these devices has risen in recent years, and is now 5.5 inches, with the market for 6 inch screens growing fast. Why is this an issue? Well, as Caroline Criado Perez (2019: 159) notes, ‘while we’re all admittedly impressed by the size of your screen, it’s a slightly different matter when it comes to fitting into half the population’s hands. The average man can fairly comfortably use his device one-handed – but the average woman’s hand is not much bigger than the handset itself’. This is despite the fact the fact that women are more likely to own an iPhone than men  .

It is not, of course, just technological artefacts that are gendered. Voice-recognition software is also very biased. One researcher (Tatman, 2017) has found that Google’s speech recognition tool is 13% more accurate for men than it is for women. There are also significant biases for race and social class. The reason lies in the dataset that the tool is trained on: the algorithms may be gender- and socio-culturally-neutral, but the dataset is not. It would not be difficult to redress this bias by training the tool on a different dataset.

The same bias can be found in automatic translation software. Because corpora such as the BNC or COCA have twice as many male pronouns as female ones (as a result of the kinds of text that are selected for the corpora), translation software reflects the bias. With Google Translate, a sentence in a language with a gender-neutral pronoun, such as ‘S/he is a doctor’ is rendered into English as ‘He is a doctor’. Meanwhile, ‘S/he is a nurse’ is translated as ‘She is a nurse’ (Criado Perez, 2019: 166).

Datasets, then, are often very far from neutral. Algorithms are not necessarily any more neutral than the datasets, and Cathy O’Neil’s best-seller ‘Weapons of Math Destruction’ catalogues the many, many ways in which algorithms, posing as neutral mathematical tools, can increase racial, social and gender inequalities.

It would not be hard to provide many more examples, but the selection above is probably enough. Technology, as Langdon Winner (Winner, 1980) observed almost forty years ago, is ‘deeply interwoven in the conditions of modern politics’. Technology cannot be neutral: it has politics.

So far, I have focused primarily on the non-neutrality of technology in terms of gender (and, in passing, race and class). Before returning to broader societal issues, I would like to make a relatively brief mention of another kind of non-neutrality: the pedagogic. Language learning materials necessarily contain content of some kind: texts, topics, the choice of values or role models, language examples, and so on. These cannot be value-free. In the early days of educational computer software, one researcher (Biraimah, 1993) found that it was ‘at least, if not more, biased than the printed page it may one day replace’. My own impression is that this remains true today.

Equally interesting to my mind is the fact that all educational technologies, ranging from the writing slate to the blackboard (see Buzbee, 2014), from the overhead projector to the interactive whiteboard, always privilege a particular kind of teaching (and learning). ‘Technologies are inherently biased because they are built to accomplish certain very specific goals which means that some technologies are good for some tasks while not so good for other tasks’ (Zhao et al., 2004: 25). Digital flashcards, for example, inevitably encourage a focus on rote learning. Contemporary LMSs have impressive multi-functionality (i.e. they often could be used in a very wide variety of ways), but, in practice, most teachers use them in very conservative ways (Laanpere et al., 2004). This may be a result of teacher and institutional preferences, but it is almost certainly due, at least in part, to the way that LMSs are designed. They are usually ‘based on traditional approaches to instruction dating from the nineteenth century: presentation and assessment [and] this can be seen in the selection of features which are most accessible in the interface, and easiest to use’ (Lane, 2009).

The argument that educational technology is neutral because it could be put to many different uses, good or bad, is problematic because the likelihood of one particular use is usually much greater than another. There is, however, another way of looking at technological neutrality, and that is to look at its origins. Elsewhere on this blog, in post after post, I have given examples of the ways in which educational technology has been developed, marketed and sold primarily for commercial purposes. Educational values, if indeed there are any, are often an afterthought. The research literature in this area is rich and growing: Stephen Ball, Larry Cuban, Neil Selwyn, Joel Spring, Audrey Watters, etc.

Rather than revisit old ground here, this is an opportunity to look at a slightly different origin of educational technology: the US military. The close connection of the early history of the internet and the Advanced Research Projects Agency (now DARPA) of the United States Department of Defense is fairly well-known. Much less well-known are the very close connections between the US military and educational technologies, which are catalogued in the recently reissued ‘The Classroom Arsenal’ by Douglas D. Noble.

Following the twin shocks of the Soviet Sputnik 1 (in 1957) and Yuri Gagarin (in 1961), the United States launched a massive programme of investment in the development of high-tech weaponry. This included ‘computer systems design, time-sharing, graphics displays, conversational programming languages, heuristic problem-solving, artificial intelligence, and cognitive science’ (Noble, 1991: 55), all of which are now crucial components in educational technology. But it also quickly became clear that more sophisticated weapons required much better trained operators, hence the US military’s huge (and continuing) interest in training. Early interest focused on teaching machines and programmed instruction (branches of the US military were by far the biggest purchasers of programmed instruction products). It was essential that training was effective and efficient, and this led to a wide interest in the mathematical modelling of learning and instruction.

What was then called computer-based education (CBE) was developed as a response to military needs. The first experiments in computer-based training took place at the Systems Research Laboratory of the Air Force’s RAND Corporation think tank (Noble, 1991: 73). Research and development in this area accelerated in the 1960s and 1970s and CBE (which has morphed into the platforms of today) ‘assumed particular forms because of the historical, contingent, military contexts for which and within which it was developed’ (Noble, 1991: 83). It is possible to imagine computer-based education having developed in very different directions. Between the 1960s and 1980s, for example, the PLATO (Programmed Logic for Automatic Teaching Operations) project at the University of Illinois focused heavily on computer-mediated social interaction (forums, message boards, email, chat rooms and multi-player games). PLATO was also significantly funded by a variety of US military agencies, but proved to be of much less interest to the generals than the work taking place in other laboratories. As Noble observes, ‘some technologies get developed while others do not, and those that do are shaped by particular interests and by the historical and political circumstances surrounding their development (Noble, 1991: 4).

According to Noble, however, the influence of the military reached far beyond the development of particular technologies. Alongside the investment in technologies, the military were the prime movers in a campaign to promote computer literacy in schools.

Computer literacy was an ideological campaign rather than an educational initiative – a campaign designed, at bottom, to render people ‘comfortable’ with the ‘inevitable’ new technologies. Its basic intent was to win the reluctant acquiescence of an entire population in a brave new world sculpted in silicon.

The computer campaign also succeeded in getting people in front of that screen and used to having computers around; it made people ‘computer-friendly’, just as computers were being rendered ‘used-friendly’. It also managed to distract the population, suddenly propelled by the urgency of learning about computers, from learning about other things, such as how computers were being used to erode the quality of their working lives, or why they, supposedly the citizens of a democracy, had no say in technological decisions that were determining the shape of their own futures.

Third, it made possible the successful introduction of millions of computers into schools, factories and offices, even homes, with minimal resistance. The nation’s public schools have by now spent over two billion dollars on over a million and a half computers, and this trend still shows no signs of abating. At this time, schools continue to spend one-fifth as much on computers, software, training and staffing as they do on all books and other instructional materials combined. Yet the impact of this enormous expenditure is a stockpile of often idle machines, typically used for quite unimaginative educational applications. Furthermore, the accumulated results of three decades of research on the effectiveness of computer-based instruction remain ‘inconclusive and often contradictory’. (Noble, 1991: x – xi)

Rather than being neutral in any way, it seems more reasonable to argue, along with (I think) most contemporary researchers, that edtech is profoundly value-laden because it has the potential to (i) influence certain values in students; (ii) change educational values in [various] ways; and (iii) change national values (Omotoyinbo & Omotoyinbo, 2016: 173). Most importantly, the growth in the use of educational technology has been accompanied by a change in the way that education itself is viewed: ‘as a tool, a sophisticated supply system of human cognitive resources, in the service of a computerized, technology-driven economy’ (Noble, 1991: 1). These two trends are inextricably linked.

References

Biraimah, K. 1993. The non-neutrality of educational computer software. Computers and Education 20 / 4: 283 – 290

Buzbee, L. 2014. Blackboard: A Personal History of the Classroom. Minneapolis: Graywolf Press

Chomsky, N. 2012. The Purpose of Education (video). Learning Without Frontiers Conference. https://www.youtube.com/watch?v=DdNAUJWJN08

Criado Perez, C. 2019. Invisible Women. London: Chatto & Windus

Fox, R. 2001. Technological neutrality and practice in higher education. In A. Herrmann and M. M. Kulski (Eds), Expanding Horizons in Teaching and Learning. Proceedings of the 10th Annual Teaching Learning Forum, 7-9 February 2001. Perth: Curtin University of Technology. http://clt.curtin.edu.au/events/conferences/tlf/tlf2001/fox.html

Laanpere, M., Poldoja, H. & Kikkas, K. 2004. The second thoughts about pedagogical neutrality of LMS. Proceedings of IEEE International Conference on Advanced Learning Technologies, 2004. https://ieeexplore.ieee.org/abstract/document/1357664

Lane, L. 2009. Insidious pedagogy: How course management systems impact teaching. First Monday, 14(10). https://firstmonday.org/ojs/index.php/fm/article/view/2530/2303Lane

Miller, A.E., MacDougall, J.D., Tarnopolsky, M. A. & Sale, D.G. 1993. ‘Gender differences in strength and muscle fiber characteristics’ European Journal of Applied Physiology and Occupational Physiology. 66(3): 254-62 https://www.ncbi.nlm.nih.gov/pubmed/8477683

Noble, D. D. 1991. The Classroom Arsenal. Abingdon, Oxon.: Routledge

Omotoyinbo, D. W. & Omotoyinbo, F. R. 2016. Educational Technology and Value Neutrality. Societal Studies, 8 / 2: 163 – 179 https://www3.mruni.eu/ojs/societal-studies/article/view/4652/4276

O’Neil, C. 2016. Weapons of Math Destruction. London: Penguin

Sundström, P. Interpreting the Notion that Technology is Value Neutral. Medicine, Health Care and Philosophy 1, 1998: 42-44

Tatman, R. 2017. ‘Gender and Dialect Bias in YouTube’s Automatic Captions’ Proceedings of the First Workshop on Ethics in Natural Language Processing, pp. 53–59 http://www.ethicsinnlp.org/workshop/pdf/EthNLP06.pdf

Wang, C. & Cai, D. 2017. ‘Hand tool handle design based on hand measurements’ MATEC Web of Conferences 119, 01044 (2017) https://www.matec-conferences.org/articles/matecconf/pdf/2017/33/matecconf_imeti2017_01044.pdf

Winner, L. 1980. Do Artifacts have Politics? Daedalus 109 / 1: 121 – 136

Zhao, Y, Alvarez-Torres, M. J., Smith, B. & Tan, H. S. 2004. The Non-neutrality of Technology: a Theoretical Analysis and Empirical Study of Computer Mediated Communication Technologies. Journal of Educational Computing Research 30 (1 &2): 23 – 55