Posts Tagged ‘investment’

440px-HydraOrganization_HeadLike the mythical monster, the ancient Hydra organisation of Marvel Comics grows two more heads if one is cut off, becoming more powerful in the process. With the most advanced technology on the planet and with a particular focus on data gathering, Hydra operates through international corporations and highly-placed individuals in national governments.
Personalized learning has also been around for centuries. Its present incarnation can be traced to the individualized instructional programmes of the late 19th century which ‘focused on delivering specific subject matter […] based on the principles of scientific management. The intent was to solve the practical problems of the classroom by reducing waste and increasing efficiency, effectiveness, and cost containment in education (Januszewski, 2001: 58). Since then, personalized learning has adopted many different names, including differentiated instruction, individualized instruction, individually guided education, programmed instruction, personalized learning, personalized instruction, and individually prescribed instruction.
Disambiguating the terms has never been easy. In the world of language learning / teaching, it was observed back in the early 1970s ‘that there is little agreement on the description and definition of individualized foreign language instruction’ (Garfinkel, 1971: 379). The point was echoed a few years later by Grittner (1975: 323): it ‘means so many things to so many different people’. A UNESCO document (Chaix & O’Neil, 1978: 6) complained that ‘the term ‘individualization’ and the many expressions using the same root, such as ‘individualized learning’, are much too ambiguous’. Zoom forward to the present day and nothing has changed. Critiquing the British government’s focus on personalized learning, the Institute for Public Policy Research (Johnson, 2004: 17) wrote that it ‘remains difficult to be certain what the Government means by personalised learning’. In the U.S. context, a piece by Sean Cavanagh (2014) in Education Week (which is financially supported by the Gates Foundation) noted that although ‘the term “personalized learning” seems to be everywhere, there is not yet a shared understanding of what it means’. In short, as Arthur Levine  has put it, the words personalized learning ‘generate more heat than light’.
Despite the lack of clarity about what precisely personalized learning actually is, it has been in the limelight of language teaching and learning since before the 1930s when Pendleton (1930: 195) described the idea as being more widespread than ever before. Zoom forward to the 1970s and we find it described as ‘one of the major movements in second-language education at the present time’ (Chastain, 1975: 334). In 1971, it was described as ‘a bandwagon onto which foreign language teachers at all levels are jumping’ (Altman & Politzer, 1971: 6). A little later, in the 1980s, ‘words or phrases such as ‘learner-centered’, ‘student-centered’, ‘personalized’, ‘individualized’, and ‘humanized’ appear as the most frequent modifiers of ‘instruction’ in journals and conferences of foreign language education (Altman & James, 1980). Continue to the present day, and we find that personalized learning is at the centre of the educational policies of governments across the world. Between 2012 and 2015, the U.S. Department of Education threw over half a billion dollars at personalized learning initiatives (Bulger, 2016: 22). At the same time, there is massive sponsorship of personalized learning from the biggest international corporations (the William and Flora Hewlett Foundation, Rogers Family Foundation, Susan and Michael Dell Foundation, and the Eli and Edythe Broad Foundation) (Bulger, 2016: 22). The Bill & Melinda Gates Foundation has invested nearly $175 million in personalized learning development and Facebook’s Mark Zuckerberg is ploughing billions of dollars into it.
There has, however, been one constant: the belief that technology can facilitate the process of personalization (whatever that might be). Technology appears to offer the potential to realise the goal of personalized learning. We have come a long way from Sydney Pressey’s attempts in the 1920s to use teaching machines to individualize instruction. At that time, the machines were just one part of the programme (and not the most important). But each new technology has offered a new range of possibilities to be exploited and each new technology, its advocates argue, ‘will solve the problems better than previous efforts’ (Ferster, 2014: xii). With the advent of data-capturing learning technologies, it has now become virtually impossible to separate advocacy of personalized instruction from advocacy of digitalization in education. As the British Department for Education has put it ‘central to personalised learning is schools’ use of data (DfES (2005) White Paper: Higher Standards, Better Schools for All. London, Department for Education and Skills, para 4.50). When the U.S. Department of Education threw half a billion dollars at personalized learning initiatives, the condition was that these projects ‘use collaborative, data-based strategies and 21st century tools to deliver instruction’ (Bulger, 2016: 22).
Is it just a coincidence that the primary advocates of personalized learning are either vendors of technology or are very close to them in the higher echelons of Hydra (World Economic Forum, World Bank, IMF, etc.)? ‘Personalized learning’ has ‘almost no descriptive value’: it is ‘a term that sounds good without the inconvenience of having any obviously specific pedagogical meaning’ (Feldstein & Hill, 2016: 30). It evokes positive responses, with its ‘nod towards more student-centered learning […], a move that honors the person learning not just the learning institution’ (Watters, 2014). As such, it is ‘a natural for marketing purposes’ since nobody in their right mind would want unpersonalized or depersonalized learning (Feldstein & Hill, 2016: 25). It’s ‘a slogan that nobody’s going to be against, and everybody’s going to be for. Nobody knows what it means, because it doesn’t mean anything. Its crucial value is that it diverts your attention from a question that does mean something: Do you support our policy?’ (Chomsky, 1997).
None of the above is intended to suggest that there might not be goals that come under the ‘personalized learning’ umbrella that are worth working towards. But that’s another story – one I will return to in another post. For the moment, it’s just worth remembering that, in one of the Marvel Comics stories, Captain America, who appeared to be fighting the depersonalized evils of the world, was actually a deep sleeper agent for Hydra.

References
Altman, H.B. & James, C.V. (eds.) 1980. Foreign Language Teaching: Meeting Individual Needs. Oxford: Pergamon Press
Altman, H.B. & Politzer, R.L. (eds.) 1971. Individualizing Foreign Language Instruction: Proceedings of the Stanford Conference, May 6 – 8, 1971. Washington, D.C.: Office of Education, U.S. Department of Health, Education, and Welfare
Bulger, M. 2016. Personalized Learning: The Conversations We’re Not Having. New York: Data and Society Research Institute.
Cavanagh, S. 2014. ‘What Is ‘Personalized Learning’? Educators Seek Clarity’ Education Week
Chaix, P., & O’Neil, C. 1978. A Critical Analysis of Forms of Autonomous Learning (Autodidaxy and Semi-autonomy in the Field of Foreign Language Learning. Final Report. UNESCO Doc Ed 78/WS/58
Chastain, K. 1975. ‘An Examination of the Basic Assumptions of “Individualized” Instruction’ The Modern Language Journal 59 / 7: 334 – 344
Chomsky, N. 1997. Media Control: The Spectacular Achievements of Propaganda. New York: Seven Stories Press
Feldstein, M. & Hill, P. 2016. ‘Personalized Learning: What it Really is and why it Really Matters’ EduCause Review March / April 2016: 25 – 35
Ferster, B. 2014. Teaching Machines. Baltimore: John Hopkins University Press
Garfinkel, A. 1971. ‘Stanford University Conference on Individualizing Foreign Language Instruction, May 6-8, 1971.’ The Modern Language Journal Vol. 55, No. 6 (Oct., 1971), pp. 378-381
Grittner, F. M. 1975. ‘Individualized Instruction: An Historical Perspective’ The Modern Language Journal 59 / 7: 323 – 333
Januszewski, A. 2001. Educational Technology: The Development of a Concept. Englewood, Colorado: Libraries Unlimited
Johnson, M. 2004. Personalised Learning – an Emperor’s Outfit? London: Institute for Public Policy Research
Pendleton, C. S. 1930. ‘Personalizing English Teaching’ Peabody Journal of Education 7 / 4: 195 – 200
Watters, A. 2014. The problem with ‘personalization’ Hack Education

by Philip Kerr & Andrew Wickham

from IATEFL 2016 Birmingham Conference Selections (ed. Tania Pattison) Faversham, Kent: IATEFL pp. 75 – 78

ELT publishing, international language testing and private language schools are all industries: products are produced, bought and sold for profit. English language teaching (ELT) is not. It is an umbrella term that is used to describe a range of activities, some of which are industries, and some of which (such as English teaching in high schools around the world) might better be described as public services. ELT, like education more generally, is, nevertheless, often referred to as an ‘industry’.

Education in a neoliberal world

The framing of ELT as an industry is both a reflection of how we understand the term and a force that shapes our understanding. Associated with the idea of ‘industry’ is a constellation of other ideas and words (such as efficacy, productivity, privatization, marketization, consumerization, digitalization and globalization) which become a part of ELT once it is framed as an industry. Repeated often enough, ‘ELT as an industry’ can become a metaphor that we think and live by. Those activities that fall under the ELT umbrella, but which are not industries, become associated with the desirability of industrial practices through such discourse.

The shift from education, seen as a public service, to educational managerialism (where education is seen in industrial terms with a focus on efficiency, free market competition, privatization and a view of students as customers) can be traced to the 1980s and 1990s (Gewirtz, 2001). In 1999, under pressure from developed economies, the General Agreement on Trade in Services (GATS) transformed education into a commodity that could be traded like any other in the marketplace (Robertson, 2006). The global industrialisation and privatization of education continues to be promoted by transnational organisations (such as the World Bank and the OECD), well-funded free-market think-tanks (such as the Cato Institute), philanthro-capitalist foundations (such as the Gates Foundation) and educational businesses (such as Pearson) (Ball, 2012).

Efficacy and learning outcomes

Managerialist approaches to education require educational products and services to be measured and compared. In ELT, the most visible manifestation of this requirement is the current ubiquity of learning outcomes. Contemporary coursebooks are full of ‘can-do’ statements, although these are not necessarily of any value to anyone. Examples from one unit of one best-selling course include ‘Now I can understand advice people give about hotels’ and ‘Now I can read an article about unique hotels’ (McCarthy et al. 2014: 74). However, in a world where accountability is paramount, they are deemed indispensable. The problem from a pedagogical perspective is that teaching input does not necessarily equate with learning uptake. Indeed, there is no reason why it should.

Drawing on the Common European Framework of Reference for Languages (CEFR) for inspiration, new performance scales have emerged in recent years. These include the Cambridge English Scale and the Pearson Global Scale of English. Moving away from the broad six categories of the CEFR, such scales permit finer-grained measurement and we now see individual vocabulary and grammar items tagged to levels. Whilst such initiatives undoubtedly support measurements of efficacy, the problem from a pedagogical perspective is that they assume that language learning is linear and incremental, as opposed to complex and jagged.

Given the importance accorded to the measurement of language learning (or what might pass for language learning), it is unsurprising that attention is shifting towards the measurement of what is probably the most important factor impacting on learning: the teaching. Teacher competency scales have been developed by Cambridge Assessment, the British Council and EAQUALS (Evaluation and Accreditation of Quality Language Services), among others.

The backwash effects of the deployment of such scales are yet to be fully experienced, but the likely increase in the perception of both language learning and teacher learning as the synthesis of granularised ‘bits of knowledge’ is cause for concern.

Digital technology

Digital technology may offer advantages to both English language teachers and learners, but its rapid growth in language learning is the result, primarily but not exclusively, of the way it has been promoted by those who stand to gain financially. In education, generally, and in English language teaching, more specifically, advocacy of the privatization of education is always accompanied by advocacy of digitalization. The global market for digital English language learning products was reported to be $2.8 billion in 2015 and is predicted to reach $3.8 billion by 2020 (Ambient Insight, 2016).

In tandem with the increased interest in measuring learning outcomes, there is fierce competition in the market for high-stakes examinations, and these are increasingly digitally delivered and marked. In the face of this competition and in a climate of digital disruption, companies like Pearson and Cambridge English are developing business models of vertical integration where they can provide and sell everything from placement testing, to courseware (either print or delivered through an LMS), teaching, assessment and teacher training. Huge investments are being made in pursuit of such models. Pearson, for example, recently bought GlobalEnglish, Wall Street English, and set up a partnership with Busuu, thus covering all aspects of language learning from resources provision and publishing to off- and online training delivery.

As regards assessment, the most recent adult coursebook from Cambridge University Press (in collaboration with Cambridge English Language Assessment), ‘Empower’ (Doff, et. Al, 2015) sells itself on a combination of course material with integrated, validated assessment.

Besides its potential for scalability (and therefore greater profit margins), the appeal (to some) of platform-delivered English language instruction is that it facilitates assessment that is much finer-grained and actionable in real time. Digitization and testing go hand in hand.

Few English language teachers have been unaffected by the move towards digital. In the state sectors, large-scale digitization initiatives (such as the distribution of laptops for educational purposes, the installation of interactive whiteboards, the move towards blended models of instruction or the move away from printed coursebooks) are becoming commonplace. In the private sectors, online (or partially online) language schools are taking market share from the traditional bricks-and-mortar institutions.

These changes have entailed modifications to the skill-sets that teachers need to have. Two announcements at this conference reflect this shift. First of all, Cambridge English launched their ‘Digital Framework for Teachers’, a matrix of six broad competency areas organised into four levels of proficiency. Secondly, Aqueduto, the Association for Quality Education and Training Online, was launched, setting itself up as an accreditation body for online or blended teacher training courses.

Teachers’ pay and conditions

In the United States, and likely soon in the UK, the move towards privatization is accompanied by an overt attack on teachers’ unions, rights, pay and conditions (Selwyn, 2014). As English language teaching in both public and private sectors is commodified and marketized it is no surprise to find that the drive to bring down costs has a negative impact on teachers worldwide. Gwynt (2015), for example, catalogues cuts in funding, large-scale redundancies, a narrowing of the curriculum, intensified workloads (including the need to comply with ‘quality control measures’), the deskilling of teachers, dilapidated buildings, minimal resources and low morale in an ESOL department in one British further education college. In France, a large-scale study by Wickham, Cagnol, Wright and Oldmeadow (Linguaid, 2015; Wright, 2016) found that EFL teachers in the very competitive private sector typically had multiple employers, limited or no job security, limited sick pay and holiday pay, very little training and low hourly rates that were deteriorating. One of the principle drivers of the pressure on salaries is the rise of online training delivery through Skype and other online platforms, using offshore teachers in low-cost countries such as the Philippines. This type of training represents 15% in value and up to 25% in volume of all language training in the French corporate sector and is developing fast in emerging countries. These examples are illustrative of a broad global trend.

Implications

Given the current climate, teachers will benefit from closer networking with fellow professionals in order, not least, to be aware of the rapidly changing landscape. It is likely that they will need to develop and extend their skill sets (especially their online skills and visibility and their specialised knowledge), to differentiate themselves from competitors and to be able to demonstrate that they are in tune with current demands. More generally, it is important to recognise that current trends have yet to run their full course. Conditions for teachers are likely to deteriorate further before they improve. More than ever before, teachers who want to have any kind of influence on the way that marketization and industrialization are shaping their working lives will need to do so collectively.

References

Ambient Insight. 2016. The 2015-2020 Worldwide Digital English Language Learning Market. http://www.ambientinsight.com/Resources/Documents/AmbientInsight_2015-2020_Worldwide_Digital_English_Market_Sample.pdf

Ball, S. J. 2012. Global Education Inc. Abingdon, Oxon.: Routledge

Doff, A., Thaine, C., Puchta, H., Stranks, J. and P. Lewis-Jones 2015. Empower. Cambridge: Cambridge University Press

Gewirtz, S. 2001. The Managerial School: Post-welfarism and Social Justice in Education. Abingdon, Oxon.: Routledge

Gwynt, W. 2015. ‘The effects of policy changes on ESOL’. Language Issues 26 / 2: 58 – 60

McCarthy, M., McCarten, J. and H. Sandiford 2014. Touchstone 2 Student’s Book Second Edition. Cambridge: Cambridge University Press

Linguaid, 2015. Le Marché de la Formation Langues à l’Heure de la Mondialisation. Guildford: Linguaid

Robertson, S. L. 2006. ‘Globalisation, GATS and trading in education services.’ published by the Centre for Globalisation, Education and Societies, University of Bristol, Bristol BS8 1JA, UK at http://www.bris.ac.uk/education/people/academicStaff/edslr/publications/04slr

Selwyn, N. 2014. Distrusting Educational Technology. New York: Routledge

Wright, R. 2016. ‘My teacher is rich … or not!’ English Teaching Professional 103: 54 – 56

 

 

Having spent a lot of time recently looking at vocabulary apps, I decided to put together a Christmas wish list of the features of my ideal vocabulary app. The list is not exhaustive and I’ve given more attention to some features than others. What (apart from testing) have I missed out?

1             Spaced repetition

Since the point of a vocabulary app is to help learners memorise vocabulary items, it is hard to imagine a decent system that does not incorporate spaced repetition. Spaced repetition algorithms offer one well-researched way of improving the brain’s ‘forgetting curve’. These algorithms come in different shapes and sizes, and I am not technically competent to judge which is the most efficient. However, as Peter Ellis Jones, the developer of a flashcard system called CardFlash, points out, efficiency is only one half of the rote memorisation problem. If you are not motivated to learn, the cleverness of the algorithm is moot. Fundamentally, learning software needs to be fun, rewarding, and give a solid sense of progression.

2             Quantity, balance and timing of new and ‘old’ items

A spaced repetition algorithm determines the optimum interval between repetitions, but further algorithms will be needed to determine when and with what frequency new items will be added to the deck. Once a system knows how many items a learner needs to learn and the time in which they have to do it, it is possible to determine the timing and frequency of the presentation of new items. But the system cannot know in advance how well an individual learner will learn the items (for any individual, some items will be more readily learnable than others) nor the extent to which learners will live up to their own positive expectations of time spent on-app. As most users of flashcard systems know, it is easy to fall behind, feel swamped and, ultimately, give up. An intelligent system needs to be able to respond to individual variables in order to ensure that the learning load is realistic.

3             Task variety

A standard flashcard system which simply asks learners to indicate whether they ‘know’ a target item before they flip over the card rapidly becomes extremely boring. A system which tests this knowledge soon becomes equally dull. There needs to be a variety of ways in which learners interact with an app, both for reasons of motivation and learning efficiency. It may be the case that, for an individual user, certain task types lead to more rapid gains in learning. An intelligent, adaptive system should be able to capture this information and modify the selection of task types.

Most younger learners and some adult learners will respond well to the inclusion of games within the range of task types. Examples of such games include the puzzles developed by Oliver Rose in his Phrase Maze app to accompany Quizlet practice.Phrase Maze 1Phrase Maze 2

4             Generative use

Memory researchers have long known about the ‘Generation Effect’ (see for example this piece of research from the Journal of Verbal Learning and Learning Behavior, 1978). Items are better learnt when the learner has to generate, in some (even small) way, the target item, rather than simply reading it. In vocabulary learning, this could be, for example, typing in the target word or, more simply, inserting some missing letters. Systems which incorporate task types that require generative use are likely to result in greater learning gains than simple, static flashcards with target items on one side and definitions or translations on the other.

5             Receptive and productive practice

The most basic digital flashcard systems require learners to understand a target item, or to generate it from a definition or translation prompt. Valuable as this may be, it won’t help learners much to use these items productively, since these systems focus exclusively on meaning. In order to do this, information must be provided about collocation, colligation, register, etc and these aspects of word knowledge will need to be focused on within the range of task types. At the same time, most vocabulary apps that I have seen focus primarily on the written word. Although any good system will offer an audio recording of the target item, and many will offer the learner the option of recording themselves, learners are invariably asked to type in their answers, rather than say them. For the latter, speech recognition technology will be needed. Ideally, too, an intelligent system will compare learner recordings with the audio models and provide feedback in such a way that the learner is guided towards a closer reproduction of the model.

6             Scaffolding and feedback

feebuMost flashcard systems are basically low-stakes, practice self-testing. Research (see, for example, Dunlosky et al’s metastudy ‘Improving Students’ Learning With Effective Learning Techniques: Promising Directions From Cognitive and Educational Psychology’) suggests that, as a learning strategy, practice testing has high utility – indeed, of higher utility than other strategies like keyword mnemonics or highlighting. However, an element of tutoring is likely to enhance practice testing, and, for this, scaffolding and feedback will be needed. If, for example, a learner is unable to produce a correct answer, they will probably benefit from being guided towards it through hints, in the same way as a teacher would elicit in a classroom. Likewise, feedback on why an answer is wrong (as opposed to simply being told that you are wrong), followed by encouragement to try again, is likely to enhance learning. Such feedback might, for example, point out that there is perhaps a spelling problem in the learner’s attempted answer, that the attempted answer is in the wrong part of speech, or that it is semantically close to the correct answer but does not collocate with other words in the text. The incorporation of intelligent feedback of this kind will require a number of NLP tools, since it will never be possible for a human item-writer to anticipate all the possible incorrect answers. A current example of intelligent feedback of this kind can be found in the Oxford English Vocabulary Trainer app.

7             Content

At the very least, a decent vocabulary app will need good definitions and translations (how many different languages?), and these will need to be tagged to the senses of the target items. These will need to be supplemented with all the other information that you find in a good learner’s dictionary: syntactic patterns, collocations, cognates, an indication of frequency, etc. The only way of getting this kind of high-quality content is by paying to license it from a company with expertise in lexicography. It doesn’t come cheap.

There will also need to be example sentences, both to illustrate meaning / use and for deployment in tasks. Dictionary databases can provide some of these, but they cannot be relied on as a source. This is because the example sentences in dictionaries have been selected and edited to accompany the other information provided in the dictionary, and not as items in practice exercises, which have rather different requirements. Once more, the solution doesn’t come cheap: experienced item writers will be needed.

Dictionaries describe and illustrate how words are typically used. But examples of typical usage tend to be as dull as they are forgettable. Learning is likely to be enhanced if examples are cognitively salient: weird examples with odd collocations, for example. Another thing for the item writers to think about.

A further challenge for an app which is not level-specific is that both the definitions and example sentences need to be level-specific. An A1 / A2 learner will need the kind of content that is found in, say, the Oxford Essential dictionary; B2 learners and above will need content from, say, the OALD.

8             Artwork and design

My wordbook2It’s easy enough to find artwork or photos of concrete nouns, but try to find or commission a pair of pictures that differentiate, for example, the adjectives ‘wild’ and ‘dangerous’ … What kind of pictures might illustrate simple verbs like ‘learn’ or ‘remember’? Will such illustrations be clear enough when squeezed into a part of a phone screen? Animations or very short video clips might provide a solution in some cases, but these are more expensive to produce and video files are much heavier.

With a few notable exceptions, such as the British Councils’s MyWordBook 2, design in vocabulary apps has been largely forgotten.

9             Importable and personalisable lists

Many learners will want to use a vocabulary app in association with other course material (e.g. coursebooks). Teachers, however, will inevitably want to edit these lists, deleting some items, adding others. Learners will want to do the same. This is a huge headache for app designers. If new items are going to be added to word lists, how will the definitions, example sentences and illustrations be generated? Will the database contain audio recordings of these words? How will these items be added to the practice tasks (if these include task types that go beyond simple double-sided flashcards)? NLP tools are not yet good enough to trawl a large corpus in order to select (and possibly edit) sentences that illustrate the right meaning and which are appropriate for interactive practice exercises. We can personalise the speed of learning and even the types of learning tasks, so long as the target language is predetermined. But as soon as we allow for personalisation of content, we run into difficulties.

10          Gamification

Maintaining motivation to use a vocabulary app is not easy. Gamification may help. Measuring progress against objectives will be a start. Stars and badges and leaderboards may help some users. Rewards may help others. But gamification features need to be built into the heart of the system, into the design and selection of tasks, rather than simply tacked on as an afterthought. They need to be trialled and tweaked, so analytics will be needed.

11          Teacher support

Although the use of vocabulary flashcards is beginning to catch on with English language teachers, teachers need help with ways to incorporate them in the work they do with their students. What can teachers do in class to encourage use of the app? In what ways does app use require teachers to change their approach to vocabulary work in the classroom? Reporting functions can help teachers know about the progress their students are making and provide very detailed information about words that are causing problems. But, as anyone involved in platform-based course materials knows, teachers need a lot of help.

12          And, of course, …

Apps need to be usable with different operating systems. Ideally, they should be (partially) usable offline. Loading times need to be short. They need to be easy and intuitive to use.

It’s unlikely that I’ll be seeing a vocabulary app with all of these features any time soon. Or, possibly, ever. The cost of developing something that could do all this would be extremely high, and there is no indication that there is a market that would be ready to pay the sort of prices that would be needed to cover the costs of development and turn a profit. We need to bear in mind, too, the fact that vocabulary apps can only ever assist in the initial acquisition of vocabulary: apps alone can’t solve the vocabulary learning problem (despite the silly claims of some app developers). The need for meaningful communicative use, extensive reading and listening, will not go away because a learner has been using an app. So, how far can we go in developing better and better vocabulary apps before users decide that a cheap / free app, with all its shortcomings, is actually good enough?

I posted a follow up to this post in October 2016.

‘Sticky’ – as in ‘sticky learning’ or ‘sticky content’ (as opposed to ‘sticky fingers’ or a ‘sticky problem’) – is itself fast becoming a sticky word. If you check out ‘sticky learning’ on Google Trends, you’ll see that it suddenly spiked in September 2011, following the slightly earlier appearance of ‘sticky content’. The historical rise in this use of the word coincides with the exponential growth in the number of references to ‘big data’.

I am often asked if adaptive learning really will take off as a big thing in language learning. Will adaptivity itself be a sticky idea? When the question is asked, people mean the big data variety of adaptive learning, rather than the much more limited adaptivity of spaced repetition algorithms, which, I think, is firmly here and here to stay. I can’t answer the question with any confidence, but I recently came across a book which suggests a useful way of approaching the question.

41u+NEyWjnL._SY344_BO1,204,203,200_‘From the Ivory Tower to the Schoolhouse’ by Jack Schneider (Harvard Education Press, 2014) investigates the reasons why promising ideas from education research fail to get taken up by practitioners, and why other, less-than-promising ideas, from a research or theoretical perspective, become sticky quite quickly. As an example of the former, Schneider considers Robert Sternberg’s ‘Triarchic Theory’. As an example of the latter, he devotes a chapter to Howard Gardner’s ‘Multiple Intelligences Theory’.

Schneider argues that educational ideas need to possess four key attributes in order for teachers to sit up, take notice and adopt them.

  1. perceived significance: the idea must answer a question central to the profession – offering a big-picture understanding rather than merely one small piece of a larger puzzle
  2. philosophical compatibility: the idea must clearly jibe with closely held [teacher] beliefs like the idea that teachers are professionals, or that all children can learn
  3. occupational realism: it must be possible for the idea to be put easily into immediate use
  4. transportability: the idea needs to find its practical expression in a form that teachers can access and use at the time that they need it – it needs to have a simple core that can travel through pre-service coursework, professional development seminars, independent study and peer networks

To what extent does big data adaptive learning possess these attributes? It certainly comes up trumps with respect to perceived significance. The big question that it attempts to answer is the question of how we can make language learning personalized / differentiated / individualised. As its advocates never cease to remind us, adaptive learning holds out the promise of moving away from a one-size-fits-all approach. The extent to which it can keep this promise is another matter, of course. For it to do so, it will never be enough just to offer different pathways through a digitalised coursebook (or its equivalent). Much, much more content will be needed: at least five or six times the content of a one-size-fits-all coursebook. At the moment, there is little evidence of the necessary investment into content being made (quite the opposite, in fact), but the idea remains powerful nevertheless.

When it comes to philosophical compatibility, adaptive learning begins to run into difficulties. Despite the decades of edging towards more communicative approaches in language teaching, research (e.g. the research into English teaching in Turkey described in a previous post), suggests that teachers still see explanation and explication as key functions of their jobs. They believe that they know their students best and they know what is best for them. Big data adaptive learning challenges these beliefs head on. It is no doubt for this reason that companies like Knewton make such a point of claiming that their technology is there to help teachers. But Jose Ferreira doth protest too much, methinks. Platform-delivered adaptive learning is a direct threat to teachers’ professionalism, their salaries and their jobs.

Occupational realism is more problematic still. Very, very few language teachers around the world have any experience of truly blended learning, and it’s very difficult to envisage precisely what it is that the teacher should be doing in a classroom. Publishers moving towards larger-scale blended adaptive materials know that this is a big problem, and are actively looking at ways of packaging teacher training / teacher development (with a specific focus on blended contexts) into the learner-facing materials that they sell. But the problem won’t go away. Education ministries have a long history of throwing money at technological ‘solutions’ without thinking about obtaining the necessary buy-in from their employees. It is safe to predict that this is something that is unlikely to change. Moreover, learning how to become a blended teacher is much harder than learning, say, how to make good use of an interactive whiteboard. Since there are as many different blended adaptive approaches as there are different educational contexts, there cannot be (irony of ironies) a one-size-fits-all approach to training teachers to make good use of this software.

Finally, how transportable is big data adaptive learning? Not very, is the short answer, and for the same reasons that ‘occupational realism’ is highly problematic.

Looking at things through Jack Schneider’s lens, we might be tempted to come to the conclusion that the future for adaptive learning is a rocky path, at best. But Schneider doesn’t take political or economic considerations into account. Sternberg’s ‘Triarchic Theory’ never had the OECD or the Gates Foundation backing it up. It never had millions and millions of dollars of investment behind it. As we know from political elections (and the big data adaptive learning issue is a profoundly political one), big bucks can buy opinions.

It may also prove to be the case that the opinions of teachers don’t actually matter much. If the big adaptive bucks can win the educational debate at the highest policy-making levels, teachers will be the first victims of the ‘creative disruption’ that adaptivity promises. If you don’t believe me, just look at what is going on in the U.S.

There are causes for concern, but I don’t want to sound too alarmist. Nobody really has a clue whether big data adaptivity will actually work in language learning terms. It remains more of a theory than a research-endorsed practice. And to end on a positive note, regardless of how sticky it proves to be, it might just provide the shot-in-the-arm realisation that language teachers, at their best, are a lot more than competent explainers of grammar or deliverers of gap-fills.

In the words of its founder and CEO, self-declared ‘visionary’ Claudio Santori, Bliu Bliu is ‘the only company in the world that teaches languages we don’t even know’. This claim, which was made during a pitch  for funding in October 2014, tells us a lot about the Bliu Bliu approach. It assumes that there exists a system by which all languages can be learnt / taught, and the particular features of any given language are not of any great importance. It’s questionable, to say the least, and Santori fails to inspire confidence when he says, in the same pitch, ‘you join Bliu Bliu, you use it, we make something magical, and after a few weeks you can understand the language’.

The basic idea behind Bliu Bliu is that a language is learnt by using it (e.g. by reading or listening to texts), but that the texts need to be selected so that you know the great majority of words within them. The technological challenge, therefore, is to find (online) texts that contain the vocabulary that is appropriate for you. After that, Santori explains , ‘you progress, you input more words and you will get more text that you can understand. Hours and hours of conversations you can fully understand and listen. Not just stupid exercise from stupid grammar book. Real conversation. And in all of them you know 100% of the words. […] So basically you will have the same opportunity that a kid has when learning his native language. Listen hours and hours of native language being naturally spoken at you…at a level he/she can understand plus some challenge, everyday some more challenge, until he can pick up words very very fast’ (sic).

test4

On entering the site, you are invited to take a test. In this, you are shown a series of words and asked to say if you find them ‘easy’ or ‘difficult’. There were 12 words in total, and each time I clicked ‘easy’. The system then tells you how many words it thinks you know, and offers you one or more words to click on. Here are the words I was presented with and, to the right, the number of words that Bliu Blu thinks I know, after clicking ‘easy’ on the preceding word.

hello 4145
teenager 5960
soap, grape 7863
receipt, washing, skateboard 9638
motorway, tram, luggage, footballer, weekday 11061

test7

Finally, I was asked about my knowledge of other languages. I said that my French was advanced and that my Spanish and German were intermediate. On the basis of this answer, I was now told that Bliu Bliu thinks that I know 11,073 words.

Eight of the words in the test are starred in the Macmillan dictionaries, meaning they are within the most frequent 7,500 words in English. Of the other four, skateboard, footballer and tram are very international words. The last, weekday, is a readily understandable compound made up of two extremely high frequency words. How could Bliu Bliu know, with such uncanny precision, that I know 11,073 words from a test like this? I decided to try the test for French. Again, I clicked ‘easy’ for each of the twelve words that was offered. This time, I was offered a very different set of words, with low frequency items like polynôme, toponymie, diaspora, vectoriel (all of which are cognate with English words), along with the rather surprising vichy (which should have had a capital letter, as it is a proper noun). Despite finding all these words easy, I was mortified to be told that I only knew 6546 words in French.

I needn’t have bothered with the test, anyway. Irrespective of level, you are offered vocabulary sets of high frequency words. Examples of sets I was offered included [the, be, of, and, to], [way, state, say, world, two], [may, man, hear, said, call] and [life, down, any, show, t]. Bliu Bliu then gives you a series of short texts that include the target words. You can click on any word you don’t know and you are given either a definition or a translation (I opted for French translations). There is no task beyond simply reading these texts. Putting aside for the moment the question of why I was being offered these particular words when my level is advanced, how does the software perform?

The vast majority of the texts are short quotes from brainyquote.com, and here is the first problem. Quotes tend to be pithy and often play with words: their comprehensibility is not always a function of the frequency of the words they contain. For the word ‘say’, for example, the texts included the Shakespearean quote It will have blood, they say; blood will have blood. For the word ‘world’, I was offered this line from Alexander Pope: The world forgetting, by the world forgot. Not, perhaps, the best way of learning a couple of very simple, high-frequency words. But this was the least of the problems.

The system operates on a word level. It doesn’t recognise phrases or chunks, or even phrasal verbs. So, a word like ‘down’ (in one of the lists above) is presented without consideration of its multiple senses. The first set of sentences I was asked to read for ‘down’ included: I never regretted what I turned down, You get old, you slow down, I’m Creole, and I’m down to earth, I never fall down. I always fight, I like seeing girls throw down and I don’t take criticism lying down. Not exactly the best way of getting to grips with the word ‘down’ if you don’t know it!

bliubliu2You may have noticed the inclusion of the word ‘t’ in one of the lists above. Here are the example sentences for practising this word: (1) Knock the ‘t’ off the ‘can’t’, (2) Sometimes reality T.V. can be stressful, (3) Argentina Debt Swap Won’t Avoid Default, (4) OK, I just don’t understand Nethanyahu, (5) Venezuela: Hell on Earth by Walter T Molano and (6) Work will win when wishy washy wishing won t. I paid €7.99 for one month of this!

The translation function is equally awful. With high frequency words with multiple meanings, you get a long list of possible translations, but no indication of which one is appropriate for the context you are looking at. With other words, it is sometimes, simply, wrong. For example, in the sentence, Heaven lent you a soul, Earth will lend a grave, the translation for ‘grave’ was only for the homonymous adjective. In the sentence There’s a bright spot in every dark cloud, the translation for ‘spot’ was only for verbs. And the translation for ‘but’ in We love but once, for once only are we perfectly equipped for loving was ‘mais’ (not at all what it means here!). The translation tool couldn’t handle the first ‘for’ in this sentence, either.

Bliu Bliu’s claim that Bliu Bliu knows you very well, every single word you know or don’t know is manifest nonsense and reveals a serious lack of understanding about what it means to know a word. However, as you spend more time on the system, a picture of your vocabulary knowledge is certainly built up. The texts that are offered begin to move away from the one-liners from brainyquote.com. As reading (or listening to recorded texts) is the only learning task that is offered, the intrinsic interest of the texts is crucial. Here, again, I was disappointed. Texts that I was offered were sourced from IEEE Spectrum (The World’s Largest Professional Association for the Advancement of Technology), infowars.com (the home of the #1 Internet News Show in the World), Latin America News and Analysis, the Google official blog (Meet 15 Finalists and Science in Action Winner for the 2013 GoogleScience Fair) MLB Trade Rumors (a clearinghouse for relevant, legitimate baseball rumors), and a long text entitled Robert Waldmann: Policy-Relevant Macro Is All in Samuelson and Solow (1960) from a blog called Brad DeLong’s Grasping Reality……with the Neural Network of a Moderately-Intelligent Cephalopod.

There is more curated content (selected from a menu which includes sections entitled ‘18+’ and ‘Controversial Jokes’). In these texts, words that the system thinks you won’t know (most of the proper nouns for example) are highlighted. And there is a small library of novels, again, where predicted unknown words are highlighted in pink. These include Dostoyevsky, Kafka, Oscar Wilde, Gogol, Conan Doyle, Joseph Conrad, Oblomov, H.P. Lovecraft, Joyce, and Poe. You can also upload your own texts if you wish.

But, by this stage, I’d had enough and I clicked on the button to cancel my subscription. I shouldn’t have been surprised when the system crashed and a message popped up saying the system had encountered an error.

Like so many ‘language learning’ start-ups, Bliu Bliu seems to know a little, but not a lot about language learning. The Bliu Bliu blog has a video of Stephen Krashen talking about comprehensible input (it is misleadingly captioned ‘Stephen Krashen on Bliu Bliu’) in which he says that we all learn languages the same way, and that is when we get comprehensible input in a low anxiety environment. Influential though it has been, Krashen’s hypothesis remains a hypothesis, and it is generally accepted now that comprehensible input may be necessary, but it is not sufficient for language learning to take place.

The hypothesis hinges, anyway, on a definition of what is meant by ‘comprehensible’ and no one has come close to defining what precisely this means. Bliu Bliu has falsely assumed that comprehensibility can be determined by self-reporting of word knowledge, and this assumption is made even more problematic by the confusion of words (as sequences of letters) with lexical items. Bliu Bliu takes no account of lexical grammar or collocation (fundamental to any real word knowledge).

The name ‘Bliu Bliu’ was inspired by an episode from ‘Friends’ where Joey tries and fails to speak French. In the episode, according to the ‘Friends’ wiki, ‘Phoebe helps Joey prepare for an audition by teaching him how to speak French. Joey does not progress well and just speaks gibberish, thinking he’s doing a great job. Phoebe explains to the director in French that Joey is her mentally disabled younger brother so he’ll take pity on Joey.’ Bliu Bliu was an unfortunately apt choice of name.

friends

It’s a good time to be in Turkey if you have digital ELT products to sell. Not so good if you happen to be an English language learner. This post takes a look at both sides of the Turkish lira.

OUP, probably the most significant of the big ELT publishers in Turkey, recorded ‘an outstanding performance’ in the country in the last financial year, making it their 5th largest ELT market. OUP’s annual report for 2013 – 2014 describes the particularly strong demand for digital products and services, a demand which is now influencing OUP’s global strategy for digital resources. When asked about the future of ELT, Peter Marshall , Managing Director of OUP’s ELT Division, suggested that Turkey was a country that could point us in the direction of an answer to the question. Marshall and OUP will be hoping that OUP’s recently launched Digital Learning Platform (DLP) ‘for the global distribution of adult and secondary ELT materials’ will be an important part of that future, in Turkey and elsewhere. I can’t think of any good reason for doubting their belief.

tbl-ipad1OUP aren’t the only ones eagerly checking the pound-lira exchange rates. For the last year, CUP also reported ‘significant sales successes’ in Turkey in their annual report . For CUP, too, it was a year in which digital development has been ‘a top priority’. CUP’s Turkish success story has been primarily driven by a deal with Anadolu University (more about this below) to provide ‘a print and online solution to train 1.7 million students’ using their Touchstone course. This was the biggest single sale in CUP’s history and has inspired publishers, both within CUP and outside, to attempt to emulate the deal. The new blended products will, of course, be adaptive.

Just how big is the Turkish digital ELT pie? According to a 2014 report from Ambient Insight , revenues from digital ELT products reached $32.0 million in 2013. They are forecast to more than double to $72.6 million in 2018. This is a growth rate of 17.8%, a rate which is practically unbeatable in any large economy, and Turkey is the 17th largest economy in the world, according to World Bank statistics .

So, what makes Turkey special?

  • Turkey has a large and young population that is growing by about 1.4% each year, which is equivalent to approximately 1 million people. According to the Turkish Ministry of Education, there are currently about 5.5 million students enrolled in upper-secondary schools. Significant growth in numbers is certain.
  • Turkey is currently in the middle of a government-sponsored $990 million project to increase the level of English proficiency in schools. The government’s target is to position the country as one of the top ten global economies by 2023, the centenary of the Turkish Republic, and it believes that this position will be more reachable if it has a population with the requisite foreign language (i.e. English) skills. As part of this project, the government has begun to introduce English in the 1st grade (previously it was in the 4th grade).
  • The level of English in Turkey is famously low and has been described as a ‘national weakness’. In October/November 2011, the Turkish research institute SETA and the Turkish Ministry for Youth and Sports conducted a large survey across Turkey of 10,174 young citizens, aged 15 to 29. The result was sobering: 59 per cent of the young people said they “did not know any foreign language.” A recent British Council report (2013) found the competence level in English of most (90+%) students across Turkey was evidenced as rudimentary – even after 1000+ hours (estimated at end of Grade 12) of English classes. This is, of course, good news for vendors of English language learning / teaching materials.
  • Turkey has launched one of the world’s largest educational technology projects: the FATIH Project (The Movement to Enhance Opportunities and Improve Technology). One of its objectives is to provide tablets for every student between grades 5 and 12. At the same time, according to the Ambient report , the intention is to ‘replace all print-based textbooks with digital content (both eTextbooks and online courses).’
  • Purchasing power in Turkey is concentrated in a relatively small number of hands, with the government as the most important player. Institutions are often very large. Anadolu University, for example, is the second largest university in the world, with over 2 million students, most of whom are studying in virtual classrooms. There are two important consequences of this. Firstly, it makes scalable, big-data-driven LMS-delivered courses with adaptive software a more attractive proposition to purchasers. Secondly, it facilitates the B2B sales model that is now preferred by vendors (including the big ELT publishers).
  • Turkey also has a ‘burgeoning private education sector’, according to Peter Marshall, and a thriving English language school industry. According to Ambient ‘commercial English language learning in Turkey is a $400 million industry with over 600 private schools across the country’. Many of these are grouped into large chains (see the bullet point above).
  • Turkey is also ‘in the vanguard of the adoption of educational technology in ELT’, according to Peter Marshall. With 36 million internet users, the 5th largest internet population in Europe, and the 3rd highest online engagement in Europe, measured by time spent online, (reported by Sina Afra ), the country’s enthusiasm for educational technology is not surprising. Ambient reports that ‘the growth rate for mobile English educational apps is 27.3%’. This enthusiasm is reflected in Turkey’s thriving ELT conference scene. The most popular conference themes and conference presentations are concerned with edtech. A keynote speech by Esat Uğurlu at the ISTEK schools 3rd international ELT conference at Yeditepe in April 2013 gives a flavour of the current interests. The talk was entitled ‘E-Learning: There is nothing to be afraid of and plenty to discover’.

All of the above makes Turkey a good place to be if you’re selling digital ELT products, even though the competition is pretty fierce. If your product isn’t adaptive, personalized and gamified, you may as well not bother.

What impact will all this have on Turkey’s English language learners? A report co-produced by TEPAV (the Economic Policy Research Foundation of Turkey) and the British Council in November 2013 suggests some of the answers, at least in the school population. The report  is entitled ‘Turkey National Needs Assessment of State School English Language Teaching’ and its Executive Summary is brutally frank in its analysis of the low achievements in English language learning in the country. It states:

The teaching of English as a subject and not a language of communication was observed in all schools visited. This grammar-based approach was identified as the first of five main factors that, in the opinion of this report, lead to the failure of Turkish students to speak/ understand English on graduation from High School, despite having received an estimated 1000+ hours of classroom instruction.

In all classes observed, students fail to learn how to communicate and function independently in English. Instead, the present teacher-centric, classroom practice focuses on students learning how to answer teachers’ questions (where there is only one, textbook-type ‘right’ answer), how to complete written exercises in a textbook, and how to pass a grammar-based test. Thus grammar-based exams/grammar tests (with right/wrong answers) drive the teaching and learning process from Grade 4 onwards. This type of classroom practice dominates all English lessons and is presented as the second causal factor with respect to the failure of Turkish students to speak/understand English.

The problem, in other words, is the curriculum and the teaching. In its recommendations, the report makes this crystal clear. Priority needs to be given to developing a revised curriculum and ‘a comprehensive and sustainable system of in-service teacher training for English teachers’. Curriculum renewal and programmes of teacher training / development are the necessary prerequisites for the successful implementation of a programme of educational digitalization. Unfortunately, research has shown again and again that these take a long time and outcomes are difficult to predict in advance.

By going for digitalization first, Turkey is taking a huge risk. What LMSs, adaptive software and most apps do best is the teaching of language knowledge (grammar and vocabulary), not the provision of opportunities for communicative practice (for which there is currently no shortage of opportunity … it is just that these opportunities are not being taken). There is a real danger, therefore, that the technology will push learning priorities in precisely the opposite direction to that which is needed. Without significant investments in curriculum reform and teacher training, how likely is it that the transmission-oriented culture of English language teaching and learning will change?

Even if the money for curriculum reform and teacher training were found, it is also highly unlikely that effective country-wide approaches to blended learning for English would develop before the current generation of tablets and their accompanying content become obsolete.

Sadly, the probability is, once more, that educational technology will be a problem-changer, even a problem-magnifier, rather than a problem-solver. I’d love to be wrong.

Duolingo testing

Posted: September 6, 2014 in testing
Tags: , , , , ,

After a break of two years, I recently returned to Duolingo in an attempt to build my German vocabulary. The attempt lasted a week. A few small things had changed, but the essentials had not, and my amusement at translating sentences like The duck eats oranges, A red dog wears white clothes or The fly is important soon turned to boredom and irritation. There are better, free ways of building vocabulary in another language.

Whilst little is new in the learning experience of Duolingo, there are significant developments at the company. The first of these is a new funding round in which they raised a further $20 million, bringing total investment to close to $40 million. Duolingo now has more than 25 million users, half of whom are described as ‘active’, and, according to Louis von Ahn,  the company’s founder, their ambition is to dominate the language learning market. Approaching their third anniversary, though, Duolingo will need, before long, to turn a profit or, at least, to break even. The original plan, to use the language data generated by users of the site to power a paying translation service, is beginning to bear fruit, with contracts with CNN and BuzzFeed. But Duolingo is going to need other income streams. This may well be part of the reason behind their decision to develop and launch their own test.

Duolingo’s marketing people, however, are trying to get another message across: Every year, over 30 million job seekers and students around the world are forced to take a test to prove that they know English in order to apply for a job or school. For some, these tests can cost their family an entire month’s salary. And not only that, taking them typically requires traveling to distant examination facilities and waiting weeks for the results. We believe there should be a better way. This is why today I’m proud to announce the beta release of the Duolingo Test Center, which was created to give everyone equal access to jobs and educational opportunities. Now anyone can conveniently certify their English skills from home, on their mobile device, and for only $20. That’s 1/10th the cost of existing tests. Talking the creative disruption talk, Duolingo wants to break into the “archaic” industry of language proficiency tests. Basically, then, they want to make the world a better place. I seem to have heard this kind of thing before.

The tests will cost $20. Gina Gotthilf , Duolingo’s head of marketing, explains the pricing strategy: We came up with the smallest value that works for us and that a lot of people can pay. Duolingo’s main markets are now the BRICS countries. In China, for example, 1.5 million people signed up with Duolingo in just one week in April of this year, according to @TECHINASIA . Besides China, Duolingo has expanded into India, Japan, Korea, Taiwan, Hong Kong, Vietnam and Indonesia this year. (Brazil already has 2.4 million users, and there are 1.5 million in Mexico.) That’s a lot of potential customers.

So, what do you get for your twenty bucks? Not a lot, is the short answer. The test lasts about 18 minutes. There are four sections, and adaptive software analyses the testee’s responses to determine the level of difficulty of subsequent questions. The first section requires users to select real English words from a list which includes invented words. The second is a short dictation, the third is a gapfill, and the fourth is a read-aloud task which is recorded and compared to a native-speaker norm. That’s it.Item types

Duolingo claims that the test scores correlate very well with TOEFL, but the claim is based on a single study by a University of Pittsburgh professor that was sponsored by Duolingo. Will further studies replicate the findings? I, for one, wouldn’t bet on it, but I won’t insult your intelligence by explaining my reasons. Test validity and reliability, then, remain to be proved, but even John Lehoczky , interim executive vice president of Carnegie Mellon University (Duolingo was developed by researchers from Carnegie Mellon’s computer science department) acknowledges that at this point [the test] is not a fit vehicle for undergraduate admissions.

Even more of a problem than validity and reliability, however, is the question of security. The test is delivered via the web or smartphone apps (Android and iOS). Testees have to provide photo ID and a photo taken on the device they are using. There are various rules (they must be alone, no headphones, etc) and a human proctor reviews the test after it has been completed. This is unlikely to impress authorities like the British immigration authorities, which recently refused to recognise online TOEFL and TOEIC qualifications, after a BBC documentary revealed ‘systematic fraud’ in the taking of these tests.

There will always be a market of sorts for valueless qualifications (think, for example, of all the cheap TEFL courses that can be taken online), but to break into the monopoly of TOEFL and IELTS (and soon perhaps Pearson), Duolingo will need to deal with the issues of validity, reliability and security. If they don’t, few – if any – institutions of higher education will recognise the test. But if they do, they’ll need to spend more money: a team of applied linguists with expertise in testing would be a good start, and serious proctoring doesn’t come cheap. Will they be able to do this and keep the price down to $20?

 

 

‘Adaptive’ is a buzzword in the marketing of educational products. Chris Dragon, President of Pearson Digital Learning, complained on the Pearson Research blog. that there are so many EdTech providers claiming to be ‘adaptive’ that you have to wonder if they are not using the term too loosely. He talks about semantic satiation, the process whereby ‘temporary loss of meaning [is] experienced when one is exposed to the uninterrupted repetition of a word or phrase’. He then goes on to claim that Pearson’s SuccessMaker (‘educational software that differentiates and personalizes K-8 reading and math instruction’) is the real adaptive McCoy.

‘Adaptive’ is also a buzzword in marketing itself. Google the phrase ‘adaptive marketing’ and you’ll quickly come up with things like Adaptive Marketing Set to Become the Next Big Thing or Adaptive marketing changes the name of the game. Adaptive marketing is what you might expect: the use of big data to track customers and enable ‘marketers to truly tailor their activities in rapid and unparalleled ways to meet their customers’ interests and needs’ (Advertising Age, February 2012). It strikes me that this sets up an extraordinary potential loop: students using adaptive learning software that generates a huge amount of data which could then be used by adaptive marketers to sell other products.

I decided it might be interesting to look at the way one adaptive software company markets itself. Knewton, for example, which claims its products are more adaptive than anybody else’s.

Knewton clearly spend a lot of time and money on their marketing efforts. There is their blog and a magazine called ‘The Knerd’. There are very regular interviews by senior executives with newspapers, magazines and other blogs. There are very frequent conference presentations. All of these are easily accessible, so it is quite easy to trace Knewton’s marketing message. And even easier when they are so open about it. David Liu, Chief Operating Officer has given an interview  in which he outlines his company’s marketing strategy. Knewton, he says, focuses on driving organic interests and traffic. To that end, we have a digital marketing group that’s highly skilled and focused on creating content marketing so users, influencers and partners alike can understand our product, the value we bring and how to work with us. We also use a lot of advanced digital and online lead generation type of techniques to target potential partners and users to be able to get the right people in those discussions.

The message consists of four main strands, which I will call EdTech, EduCation, EduBusiness and EdUtopia. Depending on the audience, the marketing message will be adapted, with one or other of these strands given more prominence.

1 EdTech

Hardly surprisingly, Knewton focuses on what they call their ‘heavy duty infrastructure for an adaptive world’. They are very proud of their adaptive credentials, their ‘rigorous data science’. The basic message is that ‘only Knewton provides true personalization for any student, anywhere’. They are not shy of using technical jargon and providing technical details to prove their point.

2 EduCation

The key message here is effectiveness (Knewton also uses the term ‘efficacy’). Statistics about growth in pass rates and reduction in withdrawal rates at institutions are cited. At the same time, teachers are directly appealed to with statements like ‘as a teacher, you get tools you never had before’ and ‘teachers will be able to add their own content, upload it, tag it and seamlessly use it’. Accompanying this fairly direct approach is a focus on buzz words and phrases which can be expected to resonate with teachers. Recent blog posts include in their headlines: ‘supporting creativity’, ‘student-centred learning’, ‘peer mentoring’, ‘formative evaluation’, ‘continuous assessment’, ‘learning styles’, ‘scaffolding instruction’, ‘real-world examples’, ‘enrichment’ or ‘lifelong learning’.

There is an apparent openness in Knewton’s readiness to communicate with the rest of the world. The blog invites readers to start discussions and post comments. Almost no one does. But one blog post by Jose Ferreira called ‘Rebooting Learning Styles’  provoked a flurry of highly critical and well-informed responses. These remain unanswered. A similar thing happened when David Liu did a guest post at eltjam. A flurry of criticism, but no response. My interpretation of this is that Knewton are a little scared of engaging in debate and of having their marketing message hijacked.

3 EduBusiness

Here’s a sample of ways that Knewton speak to potential customers and investors:

an enormous new market of online courses that bring high margin revenue and rapid growth for institutions that start offering them early and declining numbers for those who do not.

Because Knewton is trying to disrupt the traditional industry, we have nothing to lose—we’re not cannibalising ourselves—by partnering.

Unlike other groups dabbling in adaptive learning, Knewton doesn’t force you to buy pre-fabricated products using our own content. Our platform makes it possible for anyone — publishers, instructors, app developers, and others — to build her own adaptive applications using any content she likes.

The data platform industries tend to have a winner-take-all dynamic. You take that and multiply it by a very, very high-stakes product and you get an even more winner-take-all dynamic.

4 EdUtopia

I personally find this fourth strand the most interesting. Knewton are not unique in adopting this line, but it is a sign of their ambition that they choose to do so. All of the quotes that follow are from Jose Ferreira:

We can’t improve education by curing poverty. We have to cure poverty by improving education.

Edtech is our best hope to narrow — at scale — the Achievement Gap between rich and poor. Yet, for a time, it will increase that gap. Society must push past that unfortunate moment and use tech-assisted outcome improvements as the rationale to drive spending in poor schools.

I started Knewton to do my bit to fix the world’s education system. Education is among the most important problems we face, because it’s the ultimate “gateway” problem. That is, it drives virtually every global problem that we face as a species. But there’s a flip-side: if we can fix education, then we’ll dramatically improve the other problems, too. So in fact, I started Knewton not just to help fix education but to try to fix just about everything.

What if the girl who invents the cure for ovarian cancer is growing up in a Cambodian fishing village and otherwise wouldn’t have a chance? As distribution of technology continues to improve, adaptive learning will give her and similar students countless opportunities that they otherwise wouldn’t have.

But our ultimate vision – and what really motivated me to start the company – is to solve the access problem for the human race once and for all. Only 22% of the world finishes high school; only 55% finish sixth grade. This is a preventable tragedy. Adaptive learning can give students around the world access to high-quality education they wouldn’t otherwise have.

Voxy is another language learning platform that likes to tout itself as ‘the future of language learning’. It has over 2.5 million users and claims to be the No. 1 education iTunes app in 23 countries. Pearson is a major investor and has a seat on the Voxy board. Unsurprisingly, it boasts ‘a new sophisticated and patented adaptive learning technology, […] a dynamic feedback loop which results in lessons and courses that calibrate to the learner. These improvements are fundamental to what makes Voxy unique as lessons become even more personalized.’

Voxy

Voxy uses an integrated web / mobile / SMS platform to deliver its learning programme, which is based around authentic, up-to-date texts. I spent a morning as an advanced learner of English exploring what it had to offer. In what I did, everything was in English, but I imagine this is not the case for lower-level learners. Voxy was originally launched for speakers of Spanish and Portuguese.

As far as I could tell, there is very little that is (what I would call) adaptive. There is, no doubt, adaptive software at work in the vocabulary revision exercises, but it’s hard to see this operating. Before starting, users are asked about their level and what they want to ‘accomplish with English’. The six possible answers are ‘advance my career’, ‘enjoy English media’, ‘pass my English tests’, ‘travel abroad’. ‘day-to-day tasks’ and ‘social and lifestyle’. I was next asked about my interests, and the possible answers here were sports, celebrities and entertainment, business, technology, health and politics. Having answered these questions, my personalized course was ready.

I was offered a deal of $20 a month, with a free trial. This gave me access to the main course, a faily rudimentary grammar guide, a list of words I had ‘studied’, a proficiency test (reading, listening and TOEFL-style M/C grammar) and 13 hours with a ‘live’ tutor.

I decided that I couldn’t pretend to be a real learner and hook up with a tutor. Users can choose a tutor from a menu where the tutors are photographed (obligatory smile). They are young graduates and some, but not all, are described as having ‘Certification: Teaching English’, whatever this means. There are also tutor statements, one of which reads ‘I love that both teaching and studying foreign languages are abound with opportunities to experience international differences and similarities on a personal level’ (sic).

I concentrated on the main course which offered 18 lessons related to each of my declared interests. These were based on authentic texts from sources like Financial Times and New York Daily News. These were generally interesting and up-to-date. In some cases, the article was only 24 hours old.

The usual procedure was to (1) read the text, (2) tap on highlighted words, which would bring up dictionary definitions and a recording of the word, (3) listen to a recording of the text (read very slowly – far too slowly for anyone with an advanced level), (4) answer 2 -4 multiple choice questions, (5) be shown short gapped extracts from the text alongside 4 or 5 boxes, which, when you click on them gave a recording of different words, one of which was the correct answer to the highlighted gap in the text, and (6) do a word – definition matching task (the words from stage 5).

According to Wikipedia, Voxy is based on the principles of task-based language teaching. Jane Willis might beg to differ. What I saw was closer to those pre-1970s textbooks where texts were followed by glossaries. Voxy is technologically advanced, but methodologically, it is positively antediluvian.

A further problem concerns task design. Perhaps because the tasks that accompany the texts have to be produced very quickly (if the texts are really to be hot off the press), there were errors that no experienced materials writer would make, and no experienced ELT editor would fail to spot. The sorts of problems that I identifed included the following:

  • No clear rationale in the selection of vocabulary items; no apparent awareness of word difficulty or frequency.
  • No clear rationale in the selection of multiple choice items.
  • Many M/C vocabulary questions can be answered without understanding the word (simply by using the memory).
  • Vocabulary definition matching tasks often contain language in the definitions which is more complex than the target item.
  • The vocabulary definition matching tasks can mostly be done simply by eliminating the distractors (which have been plucked out of thin air, and have not previously appeared).
  • The definitions in these matching tasks often do not use the same grammar as the target item (e.g. an infinitive in the definition has to be matched to a participle target word).
  • Errors (e.g. ‘The brain reacts more strongly to rejection in real life that online rejection’ (sic) in one M/C item).

I could go on. The material has clearly not been written by experienced writers, it has not been properly edited or trialled. The texts may be interesting, but that’s the only positive that I can offer for the main part of the course that I looked at.

My greatest disappointment concerns the poor use that the technology has been put to. Contrary to Voxy’s claims, this is not a new way to learn a language, it’s not particularly fun and it’s hard to believe that it could be effective. Perhaps my, admittedly limited, experience with Voxy’s product was unrepresentative. Using authentic materials is a good idea, but this needs to be combined with decent social networking possibilities, a much more sophisticated use of adaptive technology, proper investment in item-writers and editors, and more. The future of language learning? Probably not.

voxy_2

In Part 9 of the ‘guide’ on this blog (neo-liberalism and solutionism), I suggested that the major advocates of adaptive learning form a complex network of vested neo-liberal interests. Along with adaptive learning and the digital delivery of educational content, they promote a free-market, for-profit, ‘choice’-oriented (charter schools in the US and academies in the UK) ideology. The discourses of these advocates are explored in a fascinating article by Neil Selwyn, ‘Discourses of digital ‘disruption’ in education: a critical analysis’ which can be accessed here.

Stephen Ball includes a detailed chart of this kind of network in his ‘Global Education Inc.’ (Routledge 2012). I thought it would be interesting to attempt a similar, but less ambitious, chart of my own. Sugata Mitra’s plenary talk at the IATEFL conference yesterday has generated a lot of discussion, so I thought it would be interesting to focus on him. What such charts demonstrate very clearly is that there is a very close interlinking between EdTech advocacy and a wider raft of issues on the neo-liberal wish list. Adaptive learning developments (or, for example, schools in the cloud) need to be understood in a broader context … in the same way that Mitra, Tooley, Gates et al understand these technologies.

In order to understand the chart, you will need to look at the notes below. Many more nodes could be introduced, but I have tried my best to keep things simple. All of the information here is publicly available, but I found Stephen Ball’s work especially helpful.

mitra chart

People

Bill Gates is the former chief executive and chairman of Microsoft, co-chair of the Bill and Melinda Gates Foundation.

James Tooley is the Director of the E.G. West Centre. He is a founder of the Educare Trust, founder and chairman of Omega Schools, president of Orient Global, chairman of Rumi School of Excellence, and a former consultant to the International Finance Corporation. He is also a member of the advisory council of the Institute of Economic Affairs and was responsible for creating the Education and Training Unit at the Institute.

Michael Barber is Pearson’s Chief Education Advisor and Chairman of Pearson’s $15 million Affordable Learning Fund. He is also an advisor on ‘deliverology’ to the International Finance Corporation.

Sugata Mitra is Professor of Educational Technology at the E.G. West Centre and he is Chief Scientist, Emeritus, at NIIT. He is best known for his “Hole in the Wall” experiment. In 2013, he won the $1 million TED Prize to develop his idea of a ‘school-in-the-cloud’.

Institutions

Hiwel (Hole-in-the-Wall Education Limited) is the company behind Mitra’s “Hole in the Wall” experiment. It is a subsidiary of NIIT.

NIIT Limited is an Indian company based in Gurgaon, India that operates several for-profit higher education institutions.

Omega Schools is a privately held chain of affordable, for-profit schools based in Ghana.There are currently 38 schools educating over 20,000 students.

Orient Global is a Singapore-based investment group, which bought a $48 million stake in NIIT.

Pearson is … Pearson. Pearson’s Affordable Learning Fund was set up to invest in private companies committed to innovative approaches. Its first investment was a stake in Omega Schools.

Rumi Schools of Excellence is Orient Global’s chain of low-cost private schools in India, which aims to extend access and improve educational quality through affordable private schooling.

School-in-the-cloud is described by Mitra as’ a learning lab in India, where children can embark on intellectual adventures by engaging and connecting with information and mentoring online’. Microsoft are the key sponsors.

The E.G. West Centre of the University of Newcastle is dedicated to generating knowledge and understanding about how markets and self organising systems work in education.

The Educare Trustis a non-profit agency, formed in 2002 by Professor James Tooley of the University of Newcastle Upon Tyne, England, and other members associated with private unaided schools in India.It is advised by an international team from the University of Newcastle. It services include the running of a loan scheme for schools to improve their infrastructure and facilities.

The Institute of Economic Affairs is a right-wing free market think tank in London whose stated mission is to improve understanding of the fundamental institutions of a free society by analysing and expounding the role of markets in solving economic and social problems.

The International Finance Corporation is an international financial institution which offers investment, advisory, and asset management services to encourage private sector development in developing countries. The IFC is a member of the World Bank Group.

The Templeton Foundation is a philanthropic organization that funds inter-disciplinary research about human purpose and ultimate reality. Described by Barbara Ehrenreich as a ‘right wing venture’, it has a history of supporting the Cato Institute (publishers of Tooley’s most well-known book) , a libertarian think-tank, as well as projects at major research centers and universities that explore themes related to free market economics.

Additional connections

Barber is an old friend of Tooley’s from when both men were working in Zimbabwe in the 1990s.

Omega Schools are taking part in Sugata Mitra’s TED Prize Schools in the Cloud project.

Omega Schools use textbooks developed by Pearson.

Orient Global sponsored an Education Development fund at Newcastle University. The project leaders were Tooley and Mitra. They also sponsored the Hole-in-the-Wall experiment.

Pearson, the Pearson Foundation, Microsoft and the Gates Foundation work closely together on a wide variety of projects.

Some of Tooley’s work for the Educare Trust was funded by the Templeton Trust. Tooley was also winner of the 2006 Templeton Freedom Prize for Excellence.

The International Finance Corporation and the Gates Foundation are joint sponsors of a $60 million project to improve health in Nigeria.

The International Finance Corporation was another sponsor of the Hole-in-the-Wall experiment.