Posts Tagged ‘marketing’

Take the Cambridge Assessment English website, for example. When you connect to the site, you will see, at the bottom of the screen, a familiar (to people in Europe, at least) notification about the site’s use of cookies: the cookies consent.

You probably trust the site, so ignore the notification and quickly move on to find the resource you are looking for. But if you did click on hyperlinked ‘set cookies’, what would you find? The first link takes you to the ‘Cookie policy’ where you will be told that ‘We use cookies principally because we want to make our websites and mobile applications user-friendly, and we are interested in anonymous user behaviour. Generally our cookies don’t store sensitive or personally identifiable information such as your name and address or credit card details’. Scroll down, and you will find out more about the kind of cookies that are used. Besides the cookies that are necessary to the functioning of the site, you will see that there are also ‘third party cookies’. These are explained as follows: ‘Cambridge Assessment works with third parties who serve advertisements or present offers on our behalf and personalise the content that you see. Cookies may be used by those third parties to build a profile of your interests and show you relevant adverts on other sites. They do not store personal information directly but use a unique identifier in your browser or internet device. If you do not allow these cookies, you will experience less targeted content’.

This is not factually inaccurate: personal information is not stored directly. However, it is extremely easy for this information to be triangulated with other information to identify you personally. In addition to the data that you generate by having cookies on your device, Cambridge Assessment will also directly collect data about you. Depending on your interactions with Cambridge Assessment, this will include ‘your name, date of birth, gender, contact data including your home/work postal address, email address and phone number, transaction data including your credit card number when you make a payment to us, technical data including internet protocol (IP) address, login data, browser type and technology used to access this website’. They say they may share this data ‘with other people and/or businesses who provide services on our behalf or at our request’ and ‘with social media platforms, including but not limited to Facebook, Google, Google Analytics, LinkedIn, in pseudonymised or anonymised forms’.

In short, Cambridge Assessment may hold a huge amount of data about you and they can, basically, do what they like with it.

The cookie and privacy policies are fairly standard, as is the lack of transparency in the phrasing of them. Rather more transparency would include, for example, information about which particular ad trackers you are giving your consent to. This information can be found with a browser extension tool like Ghostery, and these trackers can be blocked. As you’ll see below, there are 5 ad trackers on this site. This is rather more than other sites that English language teachers are likely to go to. ETS-TOEFL has 4, Macmillan English and Pearson have 3, CUP ELT and the British Council Teaching English have 1, OUP ELT, IATEFL, BBC Learning English and Trinity College have none. I could only find TESOL, with 6 ad trackers, which has more. The blogs for all these organisations invariably have more trackers than their websites.

The use of numerous ad trackers is probably a reflection of the importance that Cambridge Assessment gives to social media marketing. There is a research paper, produced by Cambridge Assessment, which outlines the significance of big data and social media analytics. They have far more Facebook followers (and nearly 6 million likes) than any other ELT page, and they are proud of their #1 ranking in the education category of social media. The amount of data that can be collected here is enormous and it can be analysed in myriad ways using tools like Ubervu, Yomego and Hootsuite.

A little more transparency, however, would not go amiss. According to a report in Vox, Apple has announced that some time next year ‘iPhone users will start seeing a new question when they use many of the apps on their devices: Do they want the app to follow them around the internet, tracking their behavior?’ Obviously, Google and Facebook are none too pleased about this and will be fighting back. The implications for ad trackers and online advertising, more generally, are potentially huge. I wrote to Cambridge Assessment about this and was pleased to hear that ‘Cambridge Assessment are currently reviewing the process by which we obtain users consent for the use of cookies with the intention of moving to a much more transparent model in the future’. Let’s hope that other ELT organisations are doing the same.

You may be less bothered than I am by the thought of dozens of ad trackers following you around the net so that you can be served with more personalized ads. But the digital profile about you, to which these cookies contribute, may include information about your ethnicity, disabilities and sexual orientation. This profile is auctioned to advertisers when you visit some sites, allowing them to show you ‘personalized’ adverts based on the categories in your digital profile. Contrary to EU regulations, these categories may include whether you have cancer, a substance-abuse problem, your politics and religion (as reported in Fortune https://fortune.com/2019/01/28/google-iab-sensitive-profiles/ ).

But it’s not these cookies that are the most worrying aspect about our lack of digital privacy. It’s the sheer quantity of personal data that is stored about us. Every time we ask our students to use an app or a platform, we are asking them to divulge huge amounts of data. With ClassDojo, for example, this includes names, usernames, passwords, age, addresses, photographs, videos, documents, drawings, or audio files, IP addresses and browser details, clicks, referring URL’s, time spent on site, and page views (Manolev et al., 2019; see also Williamson, 2019).

It is now widely recognized that the ‘consent’ that is obtained through cookie policies and other end-user agreements is largely spurious. These consent agreements, as Sadowski (2019) observes, are non-negotiated, and non-negotiable; you either agree or you are denied access. What’s more, he adds, citing one study, it would take 76 days, working for 8 hours a day, to read the privacy policies a person typically encounters in a year. As a result, most of us choose not to choose when we accept online services (Cobo, 2019: 25). We have little, if any, control over how the data that is collected is used (Birch et al., 2020). More importantly, perhaps, when we ask our students to sign up to an educational app, we are asking / telling them to give away their personal data, not just ours. They are unlikely to fully understand the consequences of doing so.

The extent of this ignorance is also now widely recognized. In the UK, for example, two reports (cited by Sander, 2020) indicate that ‘only a third of people know that data they have not actively chosen to share has been collected’ (Doteveryone, 2018: 5), and that ‘less than half of British adult internet users are aware that apps collect their location and information on their personal preferences’ (Ofcom, 2019: 14).

The main problem with this has been expressed by programmer and activist, Richard Stallman, in an interview with New York magazine (Kulwin, 2018): Companies are collecting data about people. The data that is collected will be abused. That’s not an absolute certainty, but it’s a practical, extreme likelihood, which is enough to make collection a problem.

The abuse that Smallman is referring to can come in a variety of forms. At the relatively trivial end is the personalized advertising. Much more serious is the way that data aggregation companies will scrape data from a variety of sources, building up individual data profiles which can be used to make significant life-impacting decisions, such as final academic grades or whether one is offered a job, insurance or credit (Manolev et al., 2019). Cathy O’Neil’s (2016) best-selling ‘Weapons of Math Destruction’ spells out in detail how this abuse of data increases racial, gender and class inequalities. And after the revelations of Edward Snowden, we all know about the routine collection by states of huge amounts of data about, well, everyone. Whether it’s used for predictive policing or straightforward repression or something else, it is simply not possible for younger people, our students, to know what personal data they may regret divulging at a later date.

Digital educational providers may try to reassure us that they will keep data private, and not use it for advertising purposes, but the reassurances are hollow. These companies may change their terms and conditions further down the line, and examples exist of when this has happened (Moore, 2018: 210). But even if this does not happen, the data can never be secure. Illegal data breaches and cyber attacks are relentless, and education ranked worst at cybersecurity out of 17 major industries in one recent analysis (Foresman, 2018). One report suggests that one in five US schools and colleges have fallen victim to cyber-crime. Two weeks ago, I learnt (by chance, as I happened to be looking at my security settings on Chrome) that my passwords for Quizlet, Future Learn, Elsevier and Science Direct had been compromised by a data breach. To get a better understanding of the scale of data breaches, you might like to look at the UK’s IT Governance site, which lists detected and publicly disclosed data breaches and cyber attacks each month (36.6 million records breached in August 2020). If you scroll through the list, you’ll see how many of them are educational sites. You’ll also see a comment about how leaky organisations have been throughout lockdown … because they weren’t prepared for the sudden shift online.

Recent years have seen a growing consensus that ‘it is crucial for language teaching to […] encompass the digital literacies which are increasingly central to learners’ […] lives’ (Dudeney et al., 2013). Most of the focus has been on the skills that are needed to use digital media. There also appears to be growing interest in developing critical thinking skills in the context of digital media (e.g. Peachey, 2016) – identifying fake news and so on. To a much lesser extent, there has been some focus on ‘issues of digital identity, responsibility, safety and ethics when students use these technologies’ (Mavridi, 2020a: 172). Mavridi (2020b: 91) also briefly discusses the personal risks of digital footprints, but she does not have the space to explore more fully the notion of critical data literacy. This literacy involves an understanding of not just the personal risks of using ‘free’ educational apps and platforms, but of why they are ‘free’ in the first place. Sander (2020b) suggests that this literacy entails ‘an understanding of datafication, recognizing the risks and benefits of the growing prevalence of data collection, analytics, automation, and predictive systems, as well as being able to critically reflect upon these developments. This includes, but goes beyond the skills of, for example, changing one’s social media settings, and rather constitutes an altered view on the pervasive, structural, and systemic levels of changing big data systems in our datafied societies’.

In my next two posts, I will, first of all, explore in more detail the idea of critical data literacy, before suggesting a range of classroom resources.

(I posted about privacy in March 2014, when I looked at the connections between big data and personalized / adaptive learning. In another post, September 2014, I looked at the claims of the CEO of Knewton who bragged that his company had five orders of magnitude more data about you than Google has. … We literally have more data about our students than any company has about anybody else about anything, and it’s not even close. You might find both of these posts interesting.)

References

Birch, K., Chiappetta, M. & Artyushina, A. (2020). ‘The problem of innovation in technoscientific capitalism: data rentiership and the policy implications of turning personal digital data into a private asset’ Policy Studies, 41:5, 468-487, DOI: 10.1080/01442872.2020.1748264

Cobo, C. (2019). I Accept the Terms and Conditions. https://adaptivelearninginelt.files.wordpress.com/2020/01/41acf-cd84b5_7a6e74f4592c460b8f34d1f69f2d5068.pdf

Doteveryone. (2018). People, Power and Technology: The 2018 Digital Attitudes Report. https://attitudes.doteveryone.org.uk

Dudeney, G., Hockly, N. & Pegrum, M. (2013). Digital Literacies. Harlow: Pearson Education

Foresman, B. (2018). Education ranked worst at cybersecurity out of 17 major industries. Edscoop, December 17, 2018. https://edscoop.com/education-ranked-worst-at-cybersecurity-out-of-17-major-industries/

Kulwin, K. (2018). F*ck Them. We Need a Law’: A Legendary Programmer Takes on Silicon Valley, New York Intelligencer, 2018, https://nymag.com/intelligencer/2018/04/richard-stallman-rms-on-privacy-data-and-free-software.html

Manolev, J., Sullivan, A. & Slee, R. (2019). ‘Vast amounts of data about our children are being harvested and stored via apps used by schools’ EduReseach Matters, February 18, 2019. https://www.aare.edu.au/blog/?p=3712

Mavridi, S. (2020a). Fostering Students’ Digital Responsibility, Ethics and Safety Skills (Dress). In Mavridi, S. & Saumell, V. (Eds.) Digital Innovations and Research in Language Learning. Faversham, Kent: IATEFL. pp. 170 – 196

Mavridi, S. (2020b). Digital literacies and the new digital divide. In Mavridi, S. & Xerri, D. (Eds.) English for 21st Century Skills. Newbury, Berks.: Express Publishing. pp. 90 – 98

Moore, M. (2018). Democracy Hacked. London: Oneworld

Ofcom. (2019). Adults: Media use and attitudes report [Report]. https://www.ofcom.org.uk/__data/assets/pdf_file/0021/149124/adults-media-use-and-attitudes-report.pdf

O’Neil, C. (2016). Weapons of Math Destruction. London: Allen Lane

Peachey, N. (2016). Thinking Critically through Digital Media. http://peacheypublications.com/

Sadowski, J. (2019). ‘When data is capital: Datafication, accumulation, and extraction’ Big Data and Society 6 (1) https://doi.org/10.1177%2F2053951718820549

Sander, I. (2020a). What is critical big data literacy and how can it be implemented? Internet Policy Review, 9 (2). DOI: 10.14763/2020.2.1479 https://www.econstor.eu/bitstream/10419/218936/1/2020-2-1479.pdf

Sander, I. (2020b). Critical big data literacy tools—Engaging citizens and promoting empowered internet usage. Data & Policy, 2: e5 doi:10.1017/dap.2020.5

Williamson, B. (2019). ‘Killer Apps for the Classroom? Developing Critical Perspectives on ClassDojo and the ‘Ed-tech’ Industry’ Journal of Professional Learning, 2019 (Semester 2) https://cpl.asn.au/journal/semester-2-2019/killer-apps-for-the-classroom-developing-critical-perspectives-on-classdojo

A week or so ago, someone in the Macmillan marketing department took it upon themselves to send out this tweet. What grabbed my attention was the claim that it is ‘a well-known fact’ that teaching students a growth mindset makes them perform better academically over time. The easily demonstrable reality (which I’ll come on to) is that this is not a fact. It’s fake news, being used for marketing purposes. The tweet links to a blog post of over a year ago. In it, Chia Suan Chong offers five tips for developing a growth mindset in students: educating students about neuroplasticity, delving deeper into success stories, celebrating challenges and mistakes, encouraging students to go outside their comfort zones, and giving ‘growth-mindset-feedback’. All of which, she suggests, might help our students. Indeed, it might, and, even if it doesn’t, it might be worth a try anyway. Chia doesn’t make any claims beyond the potential of the suggested strategies, so I wonder where the Macmillan Twitter account person got the ‘well-known fact’.

If you google ‘mindset ELT’, you will find webpage after webpage offering tips about how to promote growth mindset in learners. It’s rare for the writers of these pages to claim that the positive effects of mindset interventions are a ‘fact’, but it’s even rarer to come across anyone who suggests that mindset interventions might be an à la mode waste of time and effort. Even in more serious literature (e.g. Mercer, S. & Ryan, S. (2010). A mindset for EFL: learners’ beliefs about the role of natural talent. ELT Journal, 64 (4): 436 – 444), the approach is fundamentally enthusiastic, with no indication that there might be a problem with mindset theory. Given that this enthusiasm is repeated so often, perhaps we should not blame the Macmillan tweeter for falling victim to the illusory truth effect. After all, it appears that 98% of teachers in the US feel that growth mindset approaches should be adopted in schools (Hendrick, 2019).

Chia suggests that we can all have fixed mindsets in certain domains (e.g. I know all about that, there’s nothing more I can learn). One domain where it seems that fixed mindsets are prevalent is mindset theory itself. This post is an attempt to nudge towards more ‘growth’ and, in trying to persuade you to be more sceptical, I will quote as much as possible from Carol Dweck, the founder of mindset theory, and her close associates.

Carol Dweck’s book ‘Mindset: The New Psychology of Success’ appeared in 2006. In it, she argued that people can be placed on a continuum between those who have ‘a fixed mindset–those who believe that abilities are fixed—[and who] are less likely to flourish [and] those with a growth mindset–those who believe that abilities can be developed’ (from the back cover of the updated (2007) version of the book). There was nothing especially new about the idea. It is very close to Bandura’s (1982) theory of self-efficacy, which will be familiar to anyone who has read Zoltán Dörnyei’s more recent work on motivation in language learning. It’s closely related to Carl Roger’s (1969) ideas about self-concept and it’s not a million miles removed, either, from Maslow’s (1943) theory of self-actualization. The work of Rogers and Maslow was at the heart of the ‘humanistic turn’ in ELT in the latter part of the 20th century (see, for example, Early, 1981), so mindset theory is likely to resonate with anyone who was inspired by the humanistic work of people like Moskowitz, Stevick or Rinvolucri. The appeal of mindset theory is easy to see. Besides its novelty value, it resonates emotionally with the values that many teachers share, writes Tom Bennett: it feels right that you don’t criticise the person, but invite them to believe that, through hard work and persistence, you can achieve.

We might even trace interest in the importance of self-belief back to the Stoics (who, incidentally but not coincidentally, are experiencing a revival of interest), but Carol Dweck introduced a more modern flavour to the old wine and packaged it skilfully and accessibly in shiny new bottles. Her book was a runaway bestseller, with sales in the millions, and her TED Talk has now had over 11 million views. It was in education that mindset theory became particularly popular. As a mini-industry it is now worth millions and millions. Just one research project into the efficacy of one mindset product has received 3.5 million dollars in US federal funding.

But, much like other ideas that have done a roaring trade in popular psychology (Howard Gardner’s ‘multiple intelligences theory, for example) which seem to offer simple solutions to complex problems, there was soon pushback. It wasn’t hard for critics to scoff at motivational ‘yes-you-can’ posters in classrooms or accounts of well-meaning but misguided teacher interventions, like this one reported by Carl Hendrick:

One teacher [took] her children out into the pristine snow covering the school playground, she instructed them to walk around, taking note of their footprints. “Look at these paths you’ve been creating,” the teacher said. “In the same way that you’re creating new pathways in the snow, learning creates new pathways in your brain.”

Carol Dweck was sympathetic to the critics. She has described the early reaction to her book as ‘uncontrollable’. She freely admits that she and her colleagues had underestimated the issues around mindset interventions in the classrooms and that such interventions were ‘not yet evidence-based’. She identified two major areas where mindset interventions have gone awry. The first of these is when a teacher teaches the concept of mindsets to students, but does not change other policies and practices in the classroom. The second is that some teachers have focussed too much on praising their learners’ efforts. Teachers have taken mindset recipes and tips, without due consideration. She says:

Teachers have to ask, what exactly is the evidence suggesting? They have to realise it takes deep thought and deep experimentation on their part in the classroom to see how best the concept can be implemented there. This should be a group enterprise, in which they share what worked, what did not work, for whom and when. People need to recognise we are researchers, we have produced a body of evidence that says under these conditions this is what happened. We have not explored all the conditions that are possible. Teacher feedback on what is working and not working is hugely valuable to us to tell us what we have not done and what we need to do.

Critics like Dylan William, Carl Hendrick and Timothy Bates found that it was impossible to replicate Dweck’s findings, and that there were at best weak correlations between growth mindset and academic achievement, and between mindset interventions and academic gains. They were happy to concede that typical mindset interventions would not do any harm, but asked whether the huge amounts of money being spent on mindset would not be better invested elsewhere.

Carol Dweck seems to like the phrase ‘not yet’. She argues, in her TED Talk, that simply using the words ‘not yet’ can build students’ confidence, and her tip is often repeated by others. She also talks about mindset interventions being ‘not yet evidence-based’, which is a way of declaring her confidence that they soon will be. But, with huge financial backing, Dweck and her colleagues have recently been carrying out a lot of research and the results are now coming in. There are a small number of recent investigations that advocates of mindset interventions like to point to. For reasons of space, I’ll refer to two of them.

The first (Outes-Leon, et al., 2020) of these looked at an intervention with children in the first grades in a few hundred Peruvian secondary schools. The intervention consisted of students individually reading a text designed to introduce them to the concept of growth-mindset. This was followed by a group debate about the text, before students had to write individually a reflective letter to a friend/relative describing what they had learned. In total, this amounted to about 90 minutes of activity. Subsequently, teachers made a subjective assessment of the ‘best’ letters and attached these to the classroom wall, along with a growth mindset poster, for the rest of the school year. Teachers were also asked to take a picture of the students alongside the letters and the poster and to share this picture by email.

Academic progress was measured 2 and 14 months after the intervention and compared to a large control group. The short-term (2 months) impact of the intervention was positive for mathematics, but less so for reading comprehension. (Why?) These gains were only visible in regional schools, not at all in metropolitan schools. Similar results were found when looking at the medium-term (14 month) impact. The reasons for this are unclear. It is hypothesized that the lower-achieving students in regional schools might benefit more from the intervention. Smaller class sizes in regional schools might also be a factor. But, of course, many other explanations are possible.

The paper is entitled The Power of Believing You Can Get Smarter. The authors make it clear that they were looking for positive evidence of the intervention and they were supported by mindset advocates (e.g. David Yeager) from the start. It was funded by the World Bank, which is a long-standing advocate of growth mindset interventions. (Rather jumping the gun, the World Bank’s Mindset Team wrote in 2014 that teaching growth mindset is not just another policy fad. It is backed by a burgeoning body of empirical research.) The paper’s authors conclude that ‘the benefits of the intervention were relevant and long-lasting in the Peruvian context’, and they focus strongly on the low costs of the intervention. They acknowledge that the way the tool is introduced (design of the intervention) and the context in which this occurs (i.e., school and teacher characteristics) both matter to understand potential gains. But without understanding the role of the context, we haven’t really learned anything practical that we can take away from the research. Our understanding of the power of believing you can get smarter has not been meaningfully advanced.

The second of these studies (Yeager et al., 2019) took many thousands of lower-achieving American 9th graders from a representative sample of schools. It is a very well-designed and thoroughly reported piece of research. The intervention consisted of two 25-minute online sessions, 20 days apart, which sought to reduce the negative effort beliefs of students (the belief that having to try hard or ask for help means you lack ability), fixed-trait attributions (the attribution that failure stems from low ability) and performance avoidance goals (the goal of never looking stupid). An analysis of academic achievement at the end of the school year indicated clearly that the intervention led to improved performance. These results lead to very clear grounds for optimism about the potential of growth mindset interventions, but the report is careful to avoid overstatement. We have learnt about one particular demographic with one particular intervention, but it would be wrong to generalise beyond that. The researchers had hoped that the intervention would help to compensate for unsupportive school norms, but found that this was not the case. Instead, they found that it was when the peer norm supported the adoption of intellectual challenges that the intervention promoted sustained benefits. Context, as in the Peruvian study, was crucial. The authors write:

We emphasize that not all forms of growth mindset interventions can be expected to increase grades or advanced course-taking, even in the targeted subgroups. New growth mindset interventions that go beyond the module and population tested here will need to be subjected to rigorous development and validation processes.

I think that a reasonable conclusion from reading this research is that it may well be worth experimenting with growth mindset interventions in English language classes, but without any firm expectation of any positive impact. If nothing else, the interventions might provide useful, meaningful practice of the four skills. First, though, it would make sense to read two other pieces of research (Sisk et al., 2018; Burgoyne et al., 2020). Unlike the projects I have just discussed, these were not carried out by researchers with an a priori enthusiasm for growth-mindset interventions. And the results were rather different.

The first of these (Sisk et al., 2018) was a meta-analysis of the literature. It found that there was only a weak correlation between mindset and academic achievement, and only a weak correlation between mindset interventions and academic gains. It did, however, lend support to one of the conclusions of Yeager et al (2019), that such interventions may benefit students who are academically at risk.

The second (Burgoyne et al., 2020) found that the foundations of mind-set theory are not firm and that bold claims about mind-set appear to be overstated. Other constructs such as self-efficacy and need for achievement, [were] found to correlate much more strongly with presumed associates of mind-set.

So, where does this leave us? We are clearly a long way from ‘facts’; mindset interventions are ‘not yet evidence-based’. Carl Hendrick (2019) provides a useful summary:

The truth is we simply haven’t been able to translate the research on the benefits of a growth mindset into any sort of effective, consistent practice that makes an appreciable difference in student academic attainment. In many cases, growth mindset theory has been misrepresented and miscast as simply a means of motivating the unmotivated through pithy slogans and posters. […] Recent evidence would suggest that growth mindset interventions are not the elixir of student learning that many of its proponents claim it to be. The growth mindset appears to be a viable construct in the lab, which, when administered in the classroom via targeted interventions, doesn’t seem to work at scale. It is hard to dispute that having a self-belief in their own capacity for change is a positive attribute for students. Paradoxically, however, that aspiration is not well served by direct interventions that try to instil it.

References

Bandura, Albert (1982). Self-efficacy mechanism in human agency. American Psychologist, 37 (2): pp. 122–147. doi:10.1037/0003-066X.37.2.122.

Burgoyne, A. P., Hambrick, D. Z., & Macnamara, B. N. (2020). How Firm Are the Foundations of Mind-Set Theory? The Claims Appear Stronger Than the Evidence. Psychological Science, 31(3), 258–267. https://doi.org/10.1177/0956797619897588

Early, P. (Ed.) ELT Documents 1113 – Humanistic Approaches: An Empirical View. London: The British Council

Dweck, C. S. (2006). Mindset: The New Psychology of Success. New York: Ballantine Books

Hendrick, C. (2019). The growth mindset problem. Aeon,11 March 2019.

Maslow, A. (1943). A Theory of Human Motivation. Psychological Review, 50: pp. 370-396.

Outes-Leon, I., Sanchez, A. & Vakis, R. (2020). The Power of Believing You Can Get Smarter : The Impact of a Growth-Mindset Intervention on Academic Achievement in Peru (English). Policy Research working paper, no. WPS 9141 Washington, D.C. : World Bank Group. http://documents.worldbank.org/curated/en/212351580740956027/The-Power-of-Believing-You-Can-Get-Smarter-The-Impact-of-a-Growth-Mindset-Intervention-on-Academic-Achievement-in-Peru

Rogers, C. R. (1969). Freedom to Learn: A View of What Education Might Become. Columbus, Ohio: Charles Merill

Sisk, V. F., Burgoyne, A. P., Sun, J., Butler, J. L., Macnamara, B. N. (2018). To what extent and under which circumstances are growth mind-sets important to academic achievement? Two meta-analyses. Psychological Science, 29, 549–571. doi:10.1177/0956797617739704

Yeager, D.S., Hanselman, P., Walton, G.M. et al. (2019). A national experiment reveals where a growth mindset improves achievement. Nature 573, 364–369. https://doi.org/10.1038/s41586-019-1466-y

Around 25 years ago, when I worked at International House London, I used to teach a course called ‘Current Trends in ELT’. I no longer have records of the time so I can’t be 100% sure what was included in the course, but task-based learning, the ‘Lexical Approach’, the use of corpora, English as a Lingua Franca, learner autonomy / centredness, reflective practice and technology (CALL and CD-ROMs) were all probably part of it. I see that IH London still offers this course (next available course in January 2021) and I am struck by how similar the list of contents is. Only ‘emerging language’, CLIL, DOGME and motivation are clearly different from the menu of 25 years ago.

The term ‘current trends’ has always been a good hook to sell a product. Each year, any number of ELT conferences chooses it as their theme. Coursebooks, like ‘Cutting Edge’ or ‘Innovations’, suggest in their titles something fresh and appealing. And, since 2003, the British Council has used its English Language Teaching Innovation Awards to position itself as forward-thinking and innovative.

You could be forgiven for wondering what is especially innovative about many of the ELTon award-winners, or indeed, why neophilia actually matters at all. The problem, in a relatively limited world like language teaching, is that only so much innovation is either possible or desirable.

A year after the ELTons appeared, Adrian Underhill wrote an article about ‘Trends in English Language Teaching Today’. Almost ten years after I was teaching ‘current trends’, Adrian’s list included the use of corpora, English as a Lingua Franca, reflective practice and learner-centredness. His main guess was that practitioners would be working more with ‘the fuzzy, the unclear, the unfinished’. He hadn’t reckoned on the influence of the CEFR, Pearson’s Global Scale of English and our current obsession with measuring everything!

Jump just over ten years and Chia Suan Chong offered a listicle of ‘Ten innovations that have changed English language teaching for the British Council. Most of these were technological developments (platforms, online CPD, mobile learning) but a significant newcomer to the list was ‘soft skills’ (especially critical thinking).

Zooming forward nearer to the present, Chia then offered her list of ‘Ten trends and innovations in English language teaching for 2018’ in another post for the British Council. English as a Lingua Franca was still there, but gone were task-based learning and the ‘Lexical Approach’, corpora, learner-centredness and reflective practice. In their place came SpLNs, multi-literacies, inquiry-based learning and, above all, more about technology – platforms, mobile and blended learning, gamification.

I decided to explore current ‘current trends’ by taking a look at the last twelve months of blog posts from the four biggest UK ELT publishers. Posts such as these are interesting in two ways: (1) they are an attempt to capture what is perceived as ‘new’ and therefore more likely to attract clicks, and (2) they are also an attempt to set an agenda – they reflect what these commercial organisations would like us to be talking and thinking about. The posts reflect reasonably well the sorts of topics that are chosen for webinars, whether directly hosted or sponsored.

The most immediate and unsurprising observation is that technology is ubiquitous. No longer one among a number of topics, technology now informs (almost) all other topics. Before I draw a few conclusion, here are more detailed notes.

Pearson English blog

Along with other publishers, Pearson were keen to show how supportive to teachers they were, and the months following the appearance of the pandemic saw a greater number than normal of blog posts that did not focus on particular Pearson products. Over the last twelve months as a whole, Pearson made strenuous efforts to draw attention to their Global Scale of English and the Pearson Test of English. Assessment of one kind or another was never far away. But the other big themes of the last twelve months have been ‘soft / 21st century skills (creativity, critical thinking, collaboration, leadership, etc.), and aspects of social and emotional learning (especially engagement / motivation, anxiety and mindfulness). Three other topics also featured more than once: mediation, personalization and SpLN (dyslexia).

OUP ELT Global blog

The OUP blog has, on the whole, longer, rather more informative posts than Pearson. They also tend to be less obviously product-oriented, and fewer are written by in-house marketing people. The main message that comes across is the putative importance of ‘soft / 21st century skills’, which Oxford likes to call ‘global skills’ (along with the assessment of these skills). One post manages to pack three buzzwords into one title: ‘Global Skills – Create Empowered 21st Century Learners’. As with Pearson, ‘engagement / engaging’ is probably the most over-used word in the last twelve months. In the social and emotional area, OUP focuses on teacher well-being, rather than mindfulness (although, of course, mindfulness is a path to this well-being). There is also an interest in inquiry-based learning, literacies (digital and assessment), formative assessment and blended learning.

Macmillan English blog

The Macmillan English ‘Advancing Learning’ blog is a much less corporate beast than the Pearson and OUP blogs. There have been relatively few posts in the last twelve months, and no clear message emerges. The last year has seen posts on the Image Conference, preparing for IELTS, student retention, extensive reading, ELF pronunciation, drama, mindfulness, Zoom, EMI, and collaboration skills.

CUP World of Better Learning blog

The CUP blog, like Macmillan’s, is an eclectic affair, with no clearly discernible messages beyond supporting teachers with tips and tools to deal with the shift to online teaching. Motivation and engagement are fairly prominent (with Sarah Mercer contributing both here and at OUP). Well-being (and the inevitable nod to mindfulness) gets a look-in. Other topics include SpLNs, video and ELF pronunciation (with Laura Patsko contributing both here and at the Macmillan site).

Macro trends

My survey has certainly not been ‘scientific’, but I think it allows us to note a few macro-trends. Here are my thoughts:

  • Measurement of language and skills (both learning and teaching skills) has become central to many of our current concerns.
  • We are now much less interested in issues which are unique to language learning and teaching (e.g. task-based learning, the ‘Lexical Approach’, corpora) than we used to be.
  • Current concerns reflect much more closely the major concerns of general education (measurement, 21st century skills, social-emotional learning) than they used to. It is no coincidence that these reflect the priorities of those who shape global educational policy (OECD, World Bank, etc.).
  • 25 years ago, current trends were more like zones of interest. They were areas to explore, research and critique further. As such, we might think of them as areas of exploratory practice (‘Exploratory Practice’ itself was a ‘current trend’ in the mid 1990s). Current ‘current trends’ are much more enshrined. They are things to be implemented, and exploration of them concerns the ‘how’, not the ‘whether’.

The idea of ‘digital natives’ emerged at the turn of the century, was popularized by Marc Prensky (2001), and rapidly caught the public imagination, especially the imagination of technology marketers. Its popularity has dwindled a little since then, but is still widely used. Alternative terms include ‘Generation Y’, ‘Millennials’ and the ‘Net Generation’, definitions of which vary slightly from writer to writer. Two examples of the continued currency of the term ‘digital native’ are a 2019 article on the Pearson Global Scale of English website entitled ‘Teaching digital natives to become more human’ and an article in The Pie News (a trade magazine for ‘professionals in international education’), extolling the virtues of online learning for digital natives in times of Covid-19.

Key to understanding ‘digital natives’, according to users of the term, is their fundamental differences from previous generations. They have grown up immersed in technology, have shorter attention spans, and are adept at multitasking. They ‘are no longer the people our educational system was designed to teach’ (Prensky, 2001), so educational systems must change in order to accommodate their needs.

The problem is that ‘digital natives’ are a myth. Prensky’s ideas were not based on any meaningful research: his observations and conclusions, seductive though they might be, were no more than opinions. Kirschner and De Bruyckere (2017) state the research consensus:

There is no such thing as a digital native who is information-skilled simply because (s)he has never known a world that was not digital. […] One of the alleged abilities of students in this generation, the ability to multitask, does not exist and that designing education that assumes the presence of this ability hinders rather than helps learning.

This is neither new (see Bennett et al., 2008) nor contentious. Almost ten years ago, Thomas (2011:3) reported that ‘some researchers have been asked to remove all trace of the term from academic papers submitted to conferences in order to be seriously considered for inclusion’. There are reasons, he added, to consider some uses of the term nothing more than technoevangelism (Thomas, 2011:4). Perhaps someone should tell Pearson and the Pie News? Then, again, perhaps, they wouldn’t care.

The attribution of particular characteristics to ‘digital natives’ / ‘Generation Y’ / ‘Millennials’ is an application of Generation Theory. This can be traced back to a 1928 paper by Karl Mannheim, called ‘Das Problem der Generationen’ which grew in popularity after being translated into English in the 1950s. According to Jauregui et al (2019), the theory was extensively debated in the 1960s and 1970s, but then disappeared from academic study. The theory was not supported by empirical research, was considered to be overly schematised and too culturally-bound, and led inexorably to essentialised and reductive stereotypes.

But Generation Theory gained a new lease of life in the 1990s, following the publication of ‘Generations’ by William Strauss and Neil Howe. The book was so successful that it spawned a slew of other titles leading up to ‘Millennials Rising’ (Howe & Strauss, 2000). This popularity has continued to the present, with fans including Steve Bannon (Kaiser, 2016) who made an ‘apocalyptical and polemical’ documentary film about the 2007 – 2008 financial crisis entitled ‘Generation Zero’. The work of Strauss and Howe has been dismissed as ‘more popular culture than social science’ (Jauregui et al., 2019: 63) and in much harsher terms in two fascinating articles in Jacobin (Hart, 2018) and Aeon (Onion, 2015). The sub-heading of the latter is ‘generational labels are lazy, useless and just plain wrong’. Although dismissed by scholars as pseudo-science, the popularity of such Generation Theory helps explain why Prensky’s paper about ‘digital natives’ fell on such fertile ground. The saying, often falsely attributed to Mark Twain, that we should ‘never let the truth get in the way of a good story’ comes to mind.

But by the end of the first decade of this century, ‘digital natives’ had become problematic in two ways: not only did the term not stand up to close analysis, but it also no longer referred to the generational cohort that pundits and marketers wanted to talk about.

Around January 2018, use of the term ‘Generation Z’ began to soar, and is currently at its highest point ever in the Google Trends graph. As with ‘digital natives’, the precise birth dates of Generation Z vary from writer to writer. After 2001, according to the Cambridge dictionary; slightly earlier according to other sources. The cut-off point is somewhere between the mid and late 2010s. Other terms for this cohort have been proposed, but ‘Generation Z’ is the most popular.

William Strauss died in 2007 and Neil Howe was in his late 60s when ‘Generation Z’ became a thing, so there was space for others to take up the baton. The most successful have probably been Corey Seemiller and Meghan Grace, who, since 2016, have been churning out a book a year devoted to ‘Generation Z’. In the first of these (Seemiller & Grace, 2016), they were clearly keen to avoid some of the criticisms that had been levelled at Strauss and Howe, and they carried out research. This consisted of 1143 responses to a self-reporting questionnaire by students at US institutions of higher education. The survey also collected information about Kolb’s learning styles and multiple intelligences. With refreshing candour, they admit that the sample is not entirely representative of higher education in the US. And, since it only looked at students in higher education, it told us nothing at all about those who weren’t.

In August 2018, Pearson joined the party, bringing out a report entitled ‘Beyond Millennials: The Next Generation of Learners’. Conducted by the Harris Poll, the survey looked at 2,587 US respondents, aged between 14 and 40. The results were weighted for age, gender, race/ethnicity, marital status, household income, and education, so were rather more representative than the Seemiller & Grace research.

In ELT and educational references to ‘Generation Z’, research, of even the very limited kind mentioned above, is rarely cited. When it is, Seemiller and Grace feature prominently (e.g. Mohr & Mohr, 2017). Alternatively, even less reliable sources are used. In an ELT webinar entitled ‘Engaging Generation Z’, for example, information about the characteristics of ‘Generation Z’ learners is taken from an infographic produced by an American office furniture company.

But putting aside quibbles about the reliability of the information, and the fact that it most commonly[1] refers to Americans (who are not, perhaps, the most representative group in global terms), what do the polls tell us?

Despite claims that Generation Z are significantly different from their Millennial predecessors, the general picture that emerges suggests that differences are more a question of degree than substance. These include:

  • A preference for visual / video information over text
  • A variety of bite-sized, entertaining educational experiences
  • Short attention spans and zero tolerance for delay

All of these were identified in 2008 (Williams et al., 2008) as characteristics of the ‘Google Generation’ (a label which usually seems to span Millennials and Generation Z). There is nothing fundamentally different from Prensky’s description of ‘digital natives’. The Pearson report claimed that ‘Generation Z expects experiences both inside and outside the classroom that are more rewarding, more engaging and less time consuming. Technology is no longer a transformative phenomena for this generation, but rather a normal, integral part of life’. However, there is no clear disjuncture or discontinuity between Generation Z and Millennials, any more than there was between ‘digital natives’ and previous generations (Selwyn, 2009: 375). What has really changed is that the technology has moved on (e.g. YouTube was founded in 2005 and the first iPhone was released in 2007).

TESOL TurkeyThe discourse surrounding ‘Generation Z’ is now steadily finding its way into the world of English language teaching. The 2nd TESOL Turkey International ELT Conference took place last November with ‘Teaching Generation Z: Passing on the baton from K12 to University’ as its theme. A further gloss explained that the theme was ‘in reference to the new digital generation of learners with outstanding multitasking skills; learners who can process and absorb information within mere seconds and yet possess the shortest attention span ever’.

 

A few more examples … Cambridge University Press ran a webinar ELT webinar entitled ‘Engaging Generation Z’ and Macmillan Education has a coursebook series called ‘Exercising English for Generation Z’. EBC, a TEFL training provider, ran a blog post in November last year, ‘Teaching English to generation Z students’. And EFL Magazine had an article, ‘Critical Thinking – The Key Competence For The Z Generation’, in February of this year.

The pedagogical advice that results from this interest in Generation Z seems to boil down to: ‘Accept the digital desires of the learners, use lots of video (i.e. use more technology in the classroom) and encourage multi-tasking’.

No one, I suspect, would suggest that teachers should not make use of topics and technologies that appeal to their learners. But recommendations to change approaches to language teaching, ‘based solely on the supposed demands and needs of a new generation of digital natives must be treated with caution’ (Bennett et al., 2008: 782). It is far from clear that generational differences (even if they really exist) are important enough ‘to be considered during the design of instruction or the use of different educational technologies – at this time, the weight of the evidence is negative’ (Reeves, 2008: 21).

Perhaps, it would be more useful to turn away from surveys of attitudes and towards more fact-based research. Studies in both the US and the UK have found that myopia and other problems with the eyes is rising fast among the Generation Z cohort, and that there is a link with increased screen time, especially with handheld devices. At the same time, Generation Zers are much more likely than their predecessors to be diagnosed with anxiety disorder and depression. While the connection between technology use and mental health is far from clear, it is possible that  ‘the rise of the smartphone and social media have at least something to do with [the rise in mental health issues]’ (Twenge, 2017).

Should we be using more technology in class because learners say they want or need it? If we follow that logic, perhaps we should also be encouraging the consumption of fast food, energy drinks and Ritalin before and after lessons?

[1] Studies have been carried out in other geographical settings, including Europe (e.g. Triple-a-Team AG, 2016) and China (Tang, 2019).

References

Bennett S., Maton K., & Kervin, L. (2008). The ‘digital natives’ debate: a critical review of the evidence. British Jmournal of Educational Technology, 39 (5):pp. 775-786.

Hart, A. (2018). Against Generational Politics. Jacobin, 28 February 2018. https://jacobinmag.com/2018/02/generational-theory-millennials-boomers-age-history

Howe, N. & Strauss, W. (2000). Millennials Rising: The Next Great Generation. New York, NY: Vintage Books.

Jauregui, J., Watsjold, B., Welsh, L., Ilgen, J. S. & Robins, L. (2019). Generational “othering”: The myth of the Millennial learner. Medical Education,54: pp.60–65. https://onlinelibrary.wiley.com/doi/pdf/10.1111/medu.13795

Kaiser, D. (2016). Donald Trump, Stephen Bannon and the Coming Crisis in American National Life. Time, 18 November 2016. https://time.com/4575780/stephen-bannon-fourth-turning/

Kirschner, P.A. & De Bruyckere P. (2017). The myths of the digital native and the multitasker. Teaching and Teacher Education, 67: pp. 135-142. https://www.sciencedirect.com/science/article/pii/S0742051X16306692

Mohr, K. A. J. & Mohr, E. S. (2017). Understanding Generation Z Students to Promote a Contemporary Learning Environment. Journal on Empowering Teacher Excellence, 1 (1), Article 9 DOI: https://doi.org/10.15142/T3M05T

Onion, R. (2015). Against generations. Aeon, 19 May, 2015. https://aeon.co/essays/generational-labels-are-lazy-useless-and-just-plain-wrong

Pearson (2018). Beyond Millennials: The Next Generation of Learners. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/news/news-annoucements/2018/The-Next-Generation-of-Learners_final.pdf

Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9: pp. 1- 6

Reeves, T.C. (2008). Do Generational Differences Matter in Instructional Design? Athens, GA: University of Georgia, Department of Educational Psychology and Instructional Technology

Seemiller, C. & and Grace, M. (2016). Generation Z Goes to College. San Francisco: Jossey-Bass

Selwyn, N. (2009). The digital native-myth and reality. Perspectives, 61: pp. 364-379

Strauss W. & Howe, N. (1991). Generations: The History of America’s Future, 1584 to 2069. New York, New York: HarperCollins.

Tang F. (2019). A critical review of research on the work-related attitudes of Generation Z in China. Social Psychology and Society, 10 (2): pp. 19—28. Available at: https://psyjournals.ru/files/106927/sps_2019_n2_Tang.pdf

Thomas, M. (2011). Technology, Education, and the Discourse of the Digital Native: Between Evangelists and Dissenters. In Thomas, M. (ed). (2011). Deconstructing Digital Natives: Young people, technology and the new literacies. London: Routledge. pp. 1- 13)

Triple-a-Team AG. (2016). Generation Z Metastudie über die kommende Generation. Biglen, Switzerland. Available at: http://www.sprachenrat.bremen.de/files/aktivitaeten/Generation_Z_Metastudie.pdf

Twenge, J. M. (2017). iGen. New York: Atria Books

Williams, P., Rowlands, I. & Fieldhouse, M. (2008). The ‘Google Generation’ – myths and realities about young people’s digital information behaviour. In Nicholas, D. & Rowlands, I. (eds.) (2008). Digital Consumers. London: Facet Publishers.

Definition of gritGrit book cover

from Quartz at Work magazine

 

Grit is on the up. You may have come across articles like ‘How to Be Gritty in the Time of COVID-19’ or ‘Rediscovering the meaning of grit during COVID-19’ . If you still want more, there are new videos from Angela Duckworth herself where we can learn how to find our grit in the face of the pandemic.

Schools and educational authorities love grit. Its simple, upbeat message (‘Yes, you can’) has won over hearts and minds. Back in 2014, the British minister for education announced a £5million plan to encourage teaching ‘character and resilience’ in schools – specifically looking at making Britain’s pupils ‘grittier’. The spending on grit hasn’t stopped since.

The publishers of Duckworth’s book paid a seven-figure sum to acquire the US rights, and sales have proved the wisdom of the investment. Her TED talk has had over 6.5 million views on YouTube, although it’s worth looking at the comments to see why many people have been watching it.

Youtube comments

The world of English language teaching, always on the lookout for a new bandwagon to jump onto, is starting to catch up with the wider world of education. Luke Plonsky, an eminent SLA scholar, specialist in meta-analyses and grit enthusiast, has a bibliography of grit studies related to L2 learning, that he deems worthy of consideration. Here’s a summary, by year, of those publications. More details will follow in the next section.

Plonsky biblio

We can expect interest in ‘grit’ to continue growing, and this may be accelerated by the publication this year of Engaging Language Learners in Contemporary Classrooms by Sarah Mercer and Zoltán Dörnyei. In this book, the authors argue that a ‘facilitative mindset’ is required for learner engagement. They enumerate five interrelated principles for developing a ‘facilitative mindset’: promote a sense of competence, foster a growth mindset, promote learners’ sense of ownership and control, develop proactive learners and, develop gritty learners. After a brief discussion of grit, they write: ‘Thankfully, grit can be learnt and developed’ (p.38).

Unfortunately, they don’t provide any evidence at all for this. Unfortunately, too, this oversight is easy to explain. Such evidence as there is does not lend unequivocal support to the claim. Two studies that should have been mentioned in this book are ‘Much ado about grit: A meta-analytic synthesis of the grit literature’ (Credé et al, 2017) and ‘What shall we do about grit? A critical review of what we know and what we don’t know’ (Credé, 2018). The authors found that ‘grit as it is currently measured does not appear to be particularly predictive of success and performance’ (Credé et al, 2017) and that there is no support for the claim that ‘grit is likely to be responsive to interventions’ (Credé, 2018). In the L2 learning context, Teimouri et al (2020) concluded that more research in SLA substantiating the role of grit in L2 contexts was needed before any grit interventions can be recommended.

It has to be said that such results are hardly surprising. If, as Duckworth claims, ‘grit’ is a combination of passion and persistence, how on earth can the passion part of it be susceptible to educational interventions? ‘If there is one thing that cannot be learned, it’s passion. A person can have it and develop it, but learn it? Sadly, not’. (De Bruyckere et al., 2020: 83)

Even Duckworth herself is not convinced. In an interview on a Freakonomics podcast, she states that she hopes it’s something people can learn, but also admits not having enough proof to confirm that they can (Kirschner & Neelen, 2016)!

Is ‘grit’ a thing?

Marc Jones, in a 2016 blog post entitled ‘Gritty Politti: Grit, Growth Mindset and Neoliberal Language Teaching’, writes that ‘Grit is so difficult to define that it takes Duckworth (2016) the best part of a book to describe it adequately’. Yes, ‘grit’ is passion and persistence (or perseverance), but it’s also conscientiousness, practice and hope. Credé et al (2017) found that ‘grit is very strongly correlated with conscientiousness’ (which has already been widely studied in the educational literature). Why lump this together with passion? Another study (Muenks et al., 2017) found that ‘Students’ grit overlapped empirically with their concurrently reported self-control, self-regulation, and engagement. Students’ perseverance of effort (but not their consistency of interests) predicted their later grades, although other self-regulation and engagement variables were stronger predictors of students’ grades than was grit’. Credé (2018) concluded that ‘there appears to be no reason to accept the combination of perseverance and passion for long-term goals into a single grit construct’.

The L2 learning research listed in Plonsky’s bibliography does not offer much in support of ‘grit’, either. Many of the studies identified problems with ‘grit’ as a construct, but, even when accepting it, did not find it to be of much value. Wei et al. (2019) found a positive but weak correlation between grit and English language course grades. Yamashita (2018) found no relationship between learners’ grit and their course grades. Taşpinar & Külekçi (2018) found that students’ grit levels and academic achievement scores did not relate to each other (but still found that ‘grit, perseverance, and tenacity are the essential elements that impact learners’ ability to succeed to be prepared for the demands of today’s world’!).

There are, then, grounds for suspecting that Duckworth and her supporters have fallen foul of the ‘jangle fallacy’ – the erroneous assumption that two identical or almost identical things are different because they are labelled differently. This would also help to explain the lack of empirical support for the notion of ‘grit’. Not only are the numerous variables insufficiently differentiated, but the measures of ‘grit’ (such as Duckworth’s Grit-S measure) do not adequately target some of these variables (e.g. long-term goals, where ‘long-term’ is not defined) (Muenks et al., 2017). In addition, these measures are self-reporting and not, therefore, terribly reliable.

Referring to more general approaches to character education, one report (Gutman & Schoon, 2012) has argued that there is little empirical evidence of a causal relationship between self-concept and educational outcomes. Taking this one step further, Kathryn Ecclestone (Ecclestone, 2012) suggests that at best, the concepts and evidence that serve as the basis of these interventions are inconclusive and fragmented; ‘at worst, [they are] prey to ‘advocacy science’ or, in [their] worst manifestations, to simple entrepreneurship that competes for publicly funded interventions’ (cited in Cabanas & Illouz, 2019: 80).

Criticisms of ‘grit’

Given the lack of supporting research, any practical application of ‘grit’ ideas is premature. Duckworth herself, in an article entitled ‘Don’t Believe the Hype About Grit, Pleads the Scientist Behind the Concept’ (Dahl, 2016), cautions against hasty applications:

[By placing too much emphasis on grit, the danger is] that grit becomes a scapegoat — another reason to blame kids for not doing well, or to say that we don’t have a responsibility as a society to help them. [She worries that some interpretations of her work might make a student’s failure seem like his problem, as if he just didn’t work hard enough.] I think to separate and pit against each other character strengths on the one hand — like grit — and situational opportunities on the other is a false dichotomy […] Kids need to develop character, and they need our support in doing so.

Marc Jones, in the blog mentioned above, writes that ‘to me, grit is simply another tool for attacking the poor and the other’. You won’t win any prizes for guessing which kinds of students are most likely to be the targets of grit interventions. A clue: think of the ‘no-nonsense’ charters in the US and academies in the UK. This is what Kenneth Saltzman has to say:

‘Grit’ is a pedagogy of control that is predicated upon a promise made to poor children that if they learnt the tools of self-control and learnt to endure drudgery, then they can compete with rich children for scarce economic resources. (Saltzman, 2017: 38)

[It] is a behaviourist form of learned self-control targeting poor students of color and has been popularized post-crisis in the wake of educational privatization and defunding as the cure for poverty. [It] is designed to suggest that individual resilience and self-reliance can overcome social violence and unsupportive social contexts in the era of the shredded social state. (Saltzman, 2017: 15)

Grit is misrepresented by proponents as opening a world of individual choices rather than discussed as a mode of educational and social control in the austere world of work defined by fewer and fewer choices as secure public sector work is scaled back, unemployment continuing at high levels. (Saltzman, 2017: 49)

Whilst ‘grit’ is often presented as a way of dealing with structural inequalities in schools, critics see it as more of a problem than a solution: ‘It’s the kids who are most impacted by, rebel against, or criticize the embedded racism and classism of their institutions that are being told to have more grit, that school is hard for everyone’ (EquiTEA, 2018). A widely cited article by Nicholas Tampio (2016) points out that ‘Duckworth celebrates educational models such as Beast at West Point that weed out people who don’t obey orders’. He continues ‘that is a disastrous model for education in a democracy. US schools ought to protect dreamers, inventors, rebels and entrepreneurs – not crush them in the name of grit’.

If you’re interested in reading more critics of grit, the blog ‘Debunked!’ is an excellent source of links.

Measuring grit

Analyses of emotional behaviour have become central to economic analysis and, beginning in the 1990s, there have been constant efforts to create ‘formal instruments of classification of emotional behaviour and the elaboration of the notion of emotional competence’ (Illouz, 2007: 64). The measurement and manipulation of various aspects of ‘emotional intelligence’ have become crucial as ways ‘to control, predict, and boost performance’ (Illouz, 2007: 65). An article in the Journal of Benefit-Cost Analysis (Belfield et al., 2015) makes the economic importance of emotions very clear. Entitled ‘The Economic Value of Social and Emotional Learning’, it examines the economic value of these skills within a benefit-cost analysis (BCA) framework, and finds that the benefits of [social and emotional learning] interventions substantially outweigh the costs.

In recent years, the OECD has commissioned a number of reports on social and emotional learning and, as with everything connected with the OECD, is interested in measuringnon-cognitive skills such as perseverance (“grit”), conscientiousness, self-control, trust, attentiveness, self-esteem and self-efficacy, resilience to adversity, openness to experience, empathy, humility, tolerance of diverse opinions and the ability to engage productively in society’ (Kautz et al., 2014: 9). The measurement of personality factors will feature in the OECD’s PISA programme. Elsewhere, Ben Williamson reports that ‘US schools [are] now under pressure—following the introduction of the Every Student Succeeds Act in 2015—to provide measurable evidence of progress on the development of students’ non-academic learning’ (Williamson, 2017).

Grit, which ‘starts and ends with the lone individual as economic actor, worker, and consumer’ (Saltzman, 2017: 50), is a recent addition to the categories of emotional competence, and it should come as no surprise that educational authorities have so wholeheartedly embraced it. It is the claim that something (i.e. ‘grit’) can be taught and developed that leads directly to the desire to measure it. In a world where everything must be accountable, we need to know how effective and cost-effective our grit interventions have been.

The idea of measuring personality constructs like ‘grit’ worries even Angela Duckworth. She writes (Duckworth, 2016):

These days, however, I worry I’ve contributed, inadvertently, to an idea I vigorously oppose: high-stakes character assessment. New federal legislation can be interpreted as encouraging states and schools to incorporate measures of character into their accountability systems. This year, nine California school districts will begin doing this. But we’re nowhere near ready — and perhaps never will be — to use feedback on character as a metric for judging the effectiveness of teachers and schools. We shouldn’t be rewarding or punishing schools for how students perform on these measures.

Diane Ravitch (Ravitch, 2016) makes the point rather more forcefully: ‘The urge to quantify the unmeasurable must be recognized for what it is: stupid; arrogant; harmful; foolish, yet another way to standardize our beings’. But, like it or not, attempts to measure ‘grit’ and ‘grit’ interventions are unlikely to go away any time soon.

‘Grit’ and technology

Whenever there is talk about educational measurement and metrics, we are never far away from the world of edtech. It may not have escaped your notice that the OECD and the US Department of State for Education, enthusiasts for promoting ‘grit’, are also major players in the promotion of the datafication of education. The same holds true for organisations like the World Education Forum, the World Bank and the various philanthro-capitalist foundations to which I have referred so often in this blog. Advocacy of social and emotional learning goes hand in hand with edtech advocacy.

Two fascinating articles by Ben Williamson (2017; 2019) focus on ClassDojo, which, according to company information, reaches more than 10 million children globally every day. The founding directors of ClassDojo, writes Ben Williamson (2017), ‘explicitly describe its purpose as promoting ‘character development’ in schools and it is underpinned by particular psychological concepts from character research. Its website approvingly cites the journalist Paul Tough, author of two books on promoting ‘grit’ and ‘character’ in children, and is informed by character research conducted with the US network of KIPP charter schools (Knowledge is Power Program)’. In a circular process, ClassDojo has also ‘helped distribute and popularise concepts such as growth mindset, grit and mindfulness’ (Williamson, 2019).

The connections between ‘grit’ and edtech are especially visible when we focus on Stanford and Silicon Valley. ClassDojo was born in Palo Alto. Duckworth was a consulting scholar at Stanford 2014 -15, where Carol Dweck is a Professor of Psychology. Dweck is the big name behind growth mindset theory, which, as Sarah Mercer and Zoltán Dörnyei indicate, is closely related to ‘grit’. Dweck is also the co-founder of MindsetWorks, whose ‘Brainology’ product is ‘an online interactive program in which middle school students learn about how the brain works, how to strengthen their own brains, and how to ….’. Stanford is also home to the Stanford Lytics Lab, ‘which has begun applying new data analytics techniques to the measurement of non-cognitive learning factors including perseverance, grit, emotional state, motivation and self-regulation’, as well as the Persuasive Technologies Lab, ‘which focuses on the development of machines designed to influence human beliefs and behaviors across domains including health, business, safety, and education’ (Williamson, 2017). The Professor of Education Emeritus at Stanford is Linda Darling-Hammond, one of the most influential educators in the US. Darling-Hammond is known, among many other things, for collaborating with Pearson to develop the edTPA, ‘a nationally available, performance-based assessment for measuring the effectiveness of teacher candidates’. She is also a strong advocate of social-emotional learning initiatives and extols the virtues of ‘developing grit and a growth mindset’ (Hamadi & Darling-Hammond, 2015).

The funding of grit

Angela Duckworth’s Character Lab (‘Our mission is to advance scientific insights that help kids thrive’) is funded by, among others, the Chan Zuckerberg Initiative, the Bezos Family Foundation and Stanford’s Mindset Scholars Network. Precisely how much money Character Lab has is difficult to ascertain, but the latest grant from the Chan Zuckerberg Initiative was worth $1,912,000 to cover the period 2018 – 2021. Covering the same period, the John Templeton Foundation, donated $3,717,258 , the purpose of the grant being to ‘make character development fast, frictionless, and fruitful’.

In an earlier period (2015 – 2018), the Walton Family Foundation pledged $6.5 millionto promote and measure character education, social-emotional learning, and grit’, with part of this sum going to Character Lab and part going to similar research at Harvard Graduate School of Education. Character Lab also received $1,300,000 from the Overdeck Family Foundation for the same period.

It is not, therefore, an overstatement to say that ‘grit’ is massively funded. The funders, by and large, are the same people who have spent huge sums promoting personalized learning through technology (see my blog post Personalized learning: Hydra and the power of ambiguity). Whatever else it might be, ‘grit’ is certainly ‘a commercial tech interest’ (as Ben Williamson put it in a recent tweet).

Postscript

In the 2010 Cohen brothers’ film, ‘True Grit’, the delinquent ‘kid’, Moon, is knifed by his partner, Quincy. Turning to Rooster Cogburn, the man of true grit, Moon begs for help. In response, Cogburn looks at the dying kid and deadpans ‘I can do nothing for you, son’.

References

Belfield, C., Bowden, A., Klapp, A., Levin, H., Shand, R., & Zander, S. (2015). The Economic Value of Social and Emotional Learning. Journal of Benefit-Cost Analysis, 6(3), pp. 508-544. doi:10.1017/bca.2015.55

Cabanas, E. & Illouz, E. (2019). Manufacturing Happy Citizens. Cambridge: Polity Press.

Chaykowski, K. (2017). How ClassDojo Built One Of The Most Popular Classroom Apps By Listening To Teachers. Forbes, 22 May, 2017. https://www.forbes.com/sites/kathleenchaykowski/2017/05/22/how-classdojo-built-one-of-the-most-popular-classroom-apps-by-listening-to-teachers/#ea93d51e5ef5

Credé, M. (2018). What shall we do about grit? A critical review of what we know and what we don’t know. Educational Researcher, 47(9), 606-611.

Credé, M., Tynan, M. C., & Harms, P. D. (2017). Much ado about grit: A meta-analytic synthesis of the grit literature. Journal of Personality and Social Psychology, 113(3), 492. doi:10.1037/pspp0000102

Dahl, M. (2016). Don’t Believe the Hype About Grit, Pleads the Scientist Behind the Concept. The Cut, May 9, 2016. https://www.thecut.com/2016/05/dont-believe-the-hype-about-grit-pleads-the-scientist-behind-the-concept.html

De Bruyckere, P., Kirschner, P. A. & Hulshof, C. (2020). More Urban Myths about Learning and Education. Routledge.

Duckworth, A. (2016). Don’t Grade Schools on Grit. New York Times, March 26, 2016 https://www.nytimes.com/2016/03/27/opinion/sunday/dont-grade-schools-on-grit.html?auth=login-google&smid=nytcore-ipad-share&smprod=nytcore-ipad

Ecclestone, K. (2012). From emotional and psychological well-being to character education: Challenging policy discourses of behavioural science and ‘vulnerability’. Research Papers in Education, 27 (4), pp. 463-480

EquiTEA (2018). The Problem with Teaching ‘Grit’. Medium, 11 December 2018. https://medium.com/@eec/the-problem-with-teaching-grit-8b37ce43a87e

Gutman, L. M. & Schoon, I. (2013). The impact of non-cognitive skills on outcomes for young people: Literature review. London: Institute of Education, University of London

Hamedani, M. G. & Darling-Hammond, L. (2015). Social Emotional Learning in High School: How Three Urban High Schools Engage, Educate, and Empower Youth. Stanford Center for Opportunity Policy in Education

Kirschner, P.A. & Neelen, M. (2016). To Grit Or Not To Grit: That’s The Question. 3-Star Learning Experiences, July 5, 2016 https://3starlearningexperiences.wordpress.com/2016/07/05/to-grit-or-not-to-grit-thats-the-question/

Illouz, E. (2007). Cold Intimacies: The making of emotional capitalism. Cambridge: Polity Press

Kautz, T., Heckman, J. J., Diris, R., ter Weel, B & Borghans, L. (2014). Fostering and Measuring Skills: Improving Cognitive and Non-cognitive Skills to Promote Lifetime Success. OECD Education Working Papers 110, OECD Publishing.

Mercer, S. & Dörnyei, Z. (2020). Engaging Language Learners in Contemporary Classrooms. Cambridge University Press.

Muenks, K., Wigfield, A., Yang, J. S., & O’Neal, C. R. (2017). How true is grit? Assessing its relations to high school and college students’ personality characteristics, self-regulation, engagement, and achievement. Journal of Educational Psychology, 109, pp. 599–620.

Ravitch, D. (2016). Angela Duckworth, please don’t assess grit. Blog post, 27 March 2016, https://dianeravitch.net/2016/03/27/angela-duckworth-please-dont-assess-grit/

Saltzman, K. J. (2017). Scripted Bodies. Routledge.

Tampio, N. (2016). Teaching ‘grit’ is bad for children, and bad for democracy. Aeon, 2 June: https://aeon.co/ideas/teaching-grit-is-bad-for-children-and-bad-for-democracy

Taşpinar, K., & Külekçi, G. (2018). GRIT: An Essential Ingredient of Success in the EFL Classroom. International Journal of Languages’ Education and Teaching, 6, 208-226.

Teimouri, Y., Plonsky, L., & Tabandeh, F. (2020). L2 Grit: Passion and perseverance for second-language learning. Language Teaching Research.

Wei, H., Gao, K., & Wang, W. (2019). Understanding the relationship between grit and foreign language performance among middle schools students: The roles of foreign language enjoyment and classroom Environment. Frontiers in Psychology, 10, 1508. doi: 10.3389/fpsyg.2019.01508

Williamson, B. (2017). Decoding ClassDojo: psycho-policy, social-emotional learning and persuasive educational technologies. Learning, Media and Technology, 42 (4): pp. 440-453, DOI: 10.1080/17439884.2017.1278020

Williamson, B. (2019). ‘Killer Apps for the Classroom? Developing Critical Perspectives on ClassDojo and the ‘Ed-tech’ Industry. Journal of Professional Learning, 2019 (Semester 2) https://cpl.asn.au/journal/semester-2-2019/killer-apps-for-the-classroom-developing-critical-perspectives-on-classdojo

Yamashita, T. (2018). Grit and second language acquisition: Can passion and perseverance predict performance in Japanese language learning? Unpublished MA thesis, University of Massachusetts, Amherst.

 

What is the ‘new normal’?

Among the many words and phrases that have been coined or gained new currency since COVID-19 first struck, I find ‘the new normal’ particularly interesting. In the educational world, its meaning is so obvious that it doesn’t need spelling out. But in case you’re unclear about what I’m referring to, the title of this webinar, run by GENTEFL, the Global Educators Network Association of Teachers of English as a Foreign Language (an affiliate of IATEFL), will give you a hint.

webinar GENTEFL

Teaching in a VLE may be overstating it a bit, but you get the picture. ‘The new normal’ is the shift away from face-to-face teaching in bricks-and-mortar institutions, towards online teaching of one kind or another. The Malaysian New Straits Times refers to it as ‘E-learning, new way forward in new norm’. The TEFL Academy says that ‘digital learning is the new normal’, and the New Indian Express prefers the term ‘tech education’.

Indian express

I’ll come back to these sources in a little while.

Whose new normal?

There is, indeed, a strong possibility that online learning and teaching may become ‘the new normal’ for many people working in education. In corporate training and in higher education, ‘tech education’ will likely become increasingly common. Many universities, especially but not only in the US, Britain and Australia, have been relying on ‘international students’ (almost half a million in the UK in 2018/ 2019), in particular Chinese, to fill their coffers. With uncertainty about how and when these universities will reopen for the next academic year, a successful transition to online is a matter of survival – a challenge that a number of universities will probably not be able to rise to. The core of ELT, private TEFL schools in Inner Circle countries, likewise dependent on visitors from other countries, has also been hard hit. It is not easy for them to transition to online, since the heart of their appeal lies in their physical location.

But elsewhere, the picture is rather different. A recent Reddit discussion began as follows: ‘In Vietnam, [English language] schools have reopened and things have returned to normal almost overnight. There’s actually a teacher shortage at the moment as so many left and interest in online learning is minimal, although most schools are still offering it as an option’. The consensus in the discussion that follows is that bricks-and-mortar schools will take a hit, especially with adult (but not kids’) groups, but that ‘teaching online will not be the new normal’.

By far the greatest number of students studying English around the world are in primary and secondary schools. It is highly unlikely that online study will be the ‘new normal’ for most of these students (although we may expect to see attempts to move towards more blended approaches). There are many reasons for this, but perhaps the most glaringly obvious is that the function of schools is not exclusively educational: child-care, allowing parents to go to work, is the first among these.

We can expect some exceptions. In New York, for example, current plans include a ‘hybrid model’ (a sexed-up term for blended learning), in which students are in schools for part of the time and continue learning remotely for the rest. The idea emerged after Governor Andrew Cuomo ‘convened a committee with the Bill and Melinda Gates Foundation to reimagine education for students when school goes back in session in the fall’. How exactly this will pan out remains to be seen, but, in much of the rest of the world, where the influence of the Gates Foundation is less strong, ‘hybrid schooling’ is likely to be seen as even more unpalatable and unworkable than it is by many in New York.

In short, the ‘new normal’ will affect some sectors of English language teaching much more than others. For some, perhaps the majority, little change can be expected once state schools reopen. Smaller classes, maybe, more blended, but not a wholesale shift to ‘tech education’.

Not so new anyway!

Scott Galloway, a New York professor of marketing and author of the best-selling ‘The Four’ (an analysis of the Big Four tech firms), began a recent blog post as follows:

After COVID-19, nothing will be the same. The previous sentence is bullsh*t. On the contrary, things will never be more the same, just accelerated.

He elaborates his point by pointing out that many universities were already in deep trouble before COVID. Big tech had already moved massively into education and healthcare, which are ‘the only two sectors, other than government, that offer the margin dollars required to sate investors’ growth expectations’ (from another recent post by Galloway). Education start-ups have long been attracting cheap capital: COVID has simply sped the process up.

Coming from a very different perspective, Audrey Watters gave a conference presentation over three years ago entitled ‘Education Technology as ‘The New Normal’’. I have been writing about the normalization of digital tools in language teaching for over six years. What is new is the speed, rather than the nature, of the change.

Galloway draws an interesting parallel with the SARS virus, which, he says, ‘was huge for e-commerce in Asia, and it helped Alibaba break out into the consumer space. COVID-19 could be to education in the United States what SARS was to e-commerce in Asia’.

‘The new normal’ as a marketing tool

Earlier in this post, I mentioned three articles that discussed the ‘new normal’ in education. The first of these, from the New Straits Times, looks like a news article, but features extensive quotes from Shereen Chee, chief operating officer of Sunago Education, a Malaysian vendor of online English classes. The article is basically an advert for Sunago: one section includes the following:

Sunago combines digitisation and the human touch to create a personalised learning experience. […] Chee said now is a great time for employers to take advantage of the scheme and equip their team with enhanced English skills, so they can hit the ground running once the Covid-19 slump is over.

The second reference about ‘digital learning is the new normal’ comes from The TEFL Academy, which sells online training courses, particularly targeting prospective teachers who want to work online. The third reference, from the New Indian Express, was written by Ananth Koppar, the founder of Kshema Technologies Pvt Ltd, India’s first venture-funded software company. Koppar is hardly a neutral reporter.

Other examples abound. For example, a similar piece called ‘The ‘New Normal’ in Education’ can be found in FE News (10 June 2020). This was written by Simon Carter, Marketing and Propositions Director of RM Education, an EdTech vendor in the UK. EdTech has a long history of promoting its wares through sponsored content and adverts masquerading as reportage.

It is, therefore, a good idea, whenever you come across the phrase, ‘the new normal’, to adopt a sceptical stance from the outset. I’ll give two more examples to illustrate my point.

A recent article (1 April 2020) in the ELTABB (English Language Teachers Association Berlin Brandenburg) journal is introduced as follows:

With online language teaching being the new normal in ELT, coaching principles can help teachers and students share responsibility for the learning process.

Putting aside, for the moment, my reservations about whether online teaching is, in fact, the new normal in ‘ELT’, I’m happy to accept that coaching principles may be helpful in online teaching. But I can’t help noticing that the article was written by a self-described edupreneur and co-founder of the International Language Coaching Association (€50 annual subscription) which runs three-day training courses (€400).

My second example is a Macmillan webinar by Thom Kiddle called ‘Professional Development for teachers in the ‘new normal’. It’s a good webinar, a very good one in my opinion, but you’ll notice a NILE poster tacked to the wall behind Thom as he speaks. NILE, a highly reputed provider of teacher education courses in the UK, has invested significantly in online teacher education in recent years and is well-positioned to deal with the ‘new normal’. It’s also worth noting that the webinar host, Macmillan, is in a commercial partnership with NILE, the purpose of which is to ‘develop and promote quality teacher education programmes worldwide’. As good as the webinar is, it is also clearly, in part, an advertisement.

Thom Kiddle

The use of the phrase ‘the new normal’ as a marketing hook is not new. Although its first recorded use dates back to the first part of the 20th century, it became more widespread at the start of the 21st. One populariser of the phrase was Roger McNamee, a venture capitalist and early investor in technology, including Facebook, who wrote a book called ‘The New Normal: Great Opportunities in a Time of Great Risk’ (2004). Since then, the phrase has been used extensively to refer to the state of the business world after the financial crisis of 2018. (For more about the history of the phrase, see here.) More often than not, users of the phrase are selling the idea (and sometimes a product) that we need to get used to a new configuration of the world, one in which technology plays a greater role.

Normalizing ‘the new normal’

Of all the most unlikely sources for a critique of ‘the new normal’, the World Economic Forum has the following to offer in a blog post entitled ‘There’s nothing new about the ‘new normal’. Here’s why’:

The language of a ‘new normal’ is being deployed almost as a way to quell any uncertainty ushered in by the coronavirus. With no cure in sight, everyone from politicians and the media to friends and family has perpetuated this rhetoric as they imagine settling into life under this ‘new normal’. This framing is inviting: it contends that things will never be the same as they were before — so welcome to a new world order. By using this language, we reimagine where we were previously relative to where we are now, appropriating our present as the standard. As we weigh our personal and political responses to this pandemic, the language we employ matters. It helps to shape and reinforce our understanding of the world and the ways in which we choose to approach it. The analytic frame embodied by the persistent discussion of the ‘new normal’ helps bring order to our current turbulence, but it should not be the lens through which we examine today’s crisis.

We can’t expect the World Economic Forum to become too critical of the ‘new normal’ of digital learning, since they have been pushing for it so hard for so long. But the quote from their blog above may usefully be read in conjunction with an article by Jun Yu and Nick Couldry, called ‘Education as a domain of natural data extraction: analysing corporate discourse about educational tracking’ (Information, Communication and Society, 2020, DOI: 10.1080/1369118X.2020.1764604). The article explores the general discursive framing by which the use of big data in education has come to seem normal. The authors looked at the public discourse of eight major vendors of educational platforms that use big data (including Macmillan, Pearson, Knewton and Blackboard). They found that ‘the most fundamental move in today’s dominant commercial discourse is to promote the idea that data and its growth are natural’. In this way, ‘software systems, not teachers, [are] central to education’. Yu and Couldry’s main interest is in the way that discourse shapes the normalization of dataveillance, but, in a more general sense, the phrase, ‘the new normal’, is contributing to the normalization of digital education. If you think that’s fine, I suggest you dip into some of the books I listed in my last blog post.

At a recent ELT conference, a plenary presentation entitled ‘Getting it right with edtech’ (sponsored by a vendor of – increasingly digital – ELT products) began with the speaker suggesting that technology was basically neutral, that what you do with educational technology matters far more than the nature of the technology itself. The idea that technology is a ‘neutral tool’ has a long pedigree and often accompanies exhortations to embrace edtech in one form or another (see for example Fox, 2001). It is an idea that is supported by no less a luminary than Chomsky, who, in a 2012 video entitled ‘The Purpose of Education’ (Chomsky, 2012), said that:

As far as […] technology […] and education is concerned, technology is basically neutral. It’s kind of like a hammer. I mean, […] the hammer doesn’t care whether you use it to build a house or whether a torturer uses it to crush somebody’s skull; a hammer can do either. The same with the modern technology; say, the Internet, and so on.

Womans hammerAlthough hammers are not usually classic examples of educational technology, they are worthy of a short discussion. Hammers come in all shapes and sizes and when you choose one, you need to consider its head weight (usually between 16 and 20 ounces), the length of the handle, the shape of the grip, etc. Appropriate specifications for particular hammering tasks have been calculated in great detail. The data on which these specifications is based on an analysis of the hand size and upper body strength of the typical user. The typical user is a man, and the typical hammer has been designed for a man. The average male hand length is 177.9 mm, that of the average woman is 10 mm shorter (Wang & Cai, 2017). Women typically have about half the upper body strength of men (Miller et al., 1993). It’s possible, but not easy to find hammers designed for women (they are referred to as ‘Ladies hammers’ on Amazon). They have a much lighter head weight, a shorter handle length, and many come in pink or floral designs. Hammers, in other words, are far from neutral: they are highly gendered.

Moving closer to educational purposes and ways in which we might ‘get it right with edtech’, it is useful to look at the smart phone. The average size of these devices has risen in recent years, and is now 5.5 inches, with the market for 6 inch screens growing fast. Why is this an issue? Well, as Caroline Criado Perez (2019: 159) notes, ‘while we’re all admittedly impressed by the size of your screen, it’s a slightly different matter when it comes to fitting into half the population’s hands. The average man can fairly comfortably use his device one-handed – but the average woman’s hand is not much bigger than the handset itself’. This is despite the fact the fact that women are more likely to own an iPhone than men  .

It is not, of course, just technological artefacts that are gendered. Voice-recognition software is also very biased. One researcher (Tatman, 2017) has found that Google’s speech recognition tool is 13% more accurate for men than it is for women. There are also significant biases for race and social class. The reason lies in the dataset that the tool is trained on: the algorithms may be gender- and socio-culturally-neutral, but the dataset is not. It would not be difficult to redress this bias by training the tool on a different dataset.

The same bias can be found in automatic translation software. Because corpora such as the BNC or COCA have twice as many male pronouns as female ones (as a result of the kinds of text that are selected for the corpora), translation software reflects the bias. With Google Translate, a sentence in a language with a gender-neutral pronoun, such as ‘S/he is a doctor’ is rendered into English as ‘He is a doctor’. Meanwhile, ‘S/he is a nurse’ is translated as ‘She is a nurse’ (Criado Perez, 2019: 166).

Datasets, then, are often very far from neutral. Algorithms are not necessarily any more neutral than the datasets, and Cathy O’Neil’s best-seller ‘Weapons of Math Destruction’ catalogues the many, many ways in which algorithms, posing as neutral mathematical tools, can increase racial, social and gender inequalities.

It would not be hard to provide many more examples, but the selection above is probably enough. Technology, as Langdon Winner (Winner, 1980) observed almost forty years ago, is ‘deeply interwoven in the conditions of modern politics’. Technology cannot be neutral: it has politics.

So far, I have focused primarily on the non-neutrality of technology in terms of gender (and, in passing, race and class). Before returning to broader societal issues, I would like to make a relatively brief mention of another kind of non-neutrality: the pedagogic. Language learning materials necessarily contain content of some kind: texts, topics, the choice of values or role models, language examples, and so on. These cannot be value-free. In the early days of educational computer software, one researcher (Biraimah, 1993) found that it was ‘at least, if not more, biased than the printed page it may one day replace’. My own impression is that this remains true today.

Equally interesting to my mind is the fact that all educational technologies, ranging from the writing slate to the blackboard (see Buzbee, 2014), from the overhead projector to the interactive whiteboard, always privilege a particular kind of teaching (and learning). ‘Technologies are inherently biased because they are built to accomplish certain very specific goals which means that some technologies are good for some tasks while not so good for other tasks’ (Zhao et al., 2004: 25). Digital flashcards, for example, inevitably encourage a focus on rote learning. Contemporary LMSs have impressive multi-functionality (i.e. they often could be used in a very wide variety of ways), but, in practice, most teachers use them in very conservative ways (Laanpere et al., 2004). This may be a result of teacher and institutional preferences, but it is almost certainly due, at least in part, to the way that LMSs are designed. They are usually ‘based on traditional approaches to instruction dating from the nineteenth century: presentation and assessment [and] this can be seen in the selection of features which are most accessible in the interface, and easiest to use’ (Lane, 2009).

The argument that educational technology is neutral because it could be put to many different uses, good or bad, is problematic because the likelihood of one particular use is usually much greater than another. There is, however, another way of looking at technological neutrality, and that is to look at its origins. Elsewhere on this blog, in post after post, I have given examples of the ways in which educational technology has been developed, marketed and sold primarily for commercial purposes. Educational values, if indeed there are any, are often an afterthought. The research literature in this area is rich and growing: Stephen Ball, Larry Cuban, Neil Selwyn, Joel Spring, Audrey Watters, etc.

Rather than revisit old ground here, this is an opportunity to look at a slightly different origin of educational technology: the US military. The close connection of the early history of the internet and the Advanced Research Projects Agency (now DARPA) of the United States Department of Defense is fairly well-known. Much less well-known are the very close connections between the US military and educational technologies, which are catalogued in the recently reissued ‘The Classroom Arsenal’ by Douglas D. Noble.

Following the twin shocks of the Soviet Sputnik 1 (in 1957) and Yuri Gagarin (in 1961), the United States launched a massive programme of investment in the development of high-tech weaponry. This included ‘computer systems design, time-sharing, graphics displays, conversational programming languages, heuristic problem-solving, artificial intelligence, and cognitive science’ (Noble, 1991: 55), all of which are now crucial components in educational technology. But it also quickly became clear that more sophisticated weapons required much better trained operators, hence the US military’s huge (and continuing) interest in training. Early interest focused on teaching machines and programmed instruction (branches of the US military were by far the biggest purchasers of programmed instruction products). It was essential that training was effective and efficient, and this led to a wide interest in the mathematical modelling of learning and instruction.

What was then called computer-based education (CBE) was developed as a response to military needs. The first experiments in computer-based training took place at the Systems Research Laboratory of the Air Force’s RAND Corporation think tank (Noble, 1991: 73). Research and development in this area accelerated in the 1960s and 1970s and CBE (which has morphed into the platforms of today) ‘assumed particular forms because of the historical, contingent, military contexts for which and within which it was developed’ (Noble, 1991: 83). It is possible to imagine computer-based education having developed in very different directions. Between the 1960s and 1980s, for example, the PLATO (Programmed Logic for Automatic Teaching Operations) project at the University of Illinois focused heavily on computer-mediated social interaction (forums, message boards, email, chat rooms and multi-player games). PLATO was also significantly funded by a variety of US military agencies, but proved to be of much less interest to the generals than the work taking place in other laboratories. As Noble observes, ‘some technologies get developed while others do not, and those that do are shaped by particular interests and by the historical and political circumstances surrounding their development (Noble, 1991: 4).

According to Noble, however, the influence of the military reached far beyond the development of particular technologies. Alongside the investment in technologies, the military were the prime movers in a campaign to promote computer literacy in schools.

Computer literacy was an ideological campaign rather than an educational initiative – a campaign designed, at bottom, to render people ‘comfortable’ with the ‘inevitable’ new technologies. Its basic intent was to win the reluctant acquiescence of an entire population in a brave new world sculpted in silicon.

The computer campaign also succeeded in getting people in front of that screen and used to having computers around; it made people ‘computer-friendly’, just as computers were being rendered ‘used-friendly’. It also managed to distract the population, suddenly propelled by the urgency of learning about computers, from learning about other things, such as how computers were being used to erode the quality of their working lives, or why they, supposedly the citizens of a democracy, had no say in technological decisions that were determining the shape of their own futures.

Third, it made possible the successful introduction of millions of computers into schools, factories and offices, even homes, with minimal resistance. The nation’s public schools have by now spent over two billion dollars on over a million and a half computers, and this trend still shows no signs of abating. At this time, schools continue to spend one-fifth as much on computers, software, training and staffing as they do on all books and other instructional materials combined. Yet the impact of this enormous expenditure is a stockpile of often idle machines, typically used for quite unimaginative educational applications. Furthermore, the accumulated results of three decades of research on the effectiveness of computer-based instruction remain ‘inconclusive and often contradictory’. (Noble, 1991: x – xi)

Rather than being neutral in any way, it seems more reasonable to argue, along with (I think) most contemporary researchers, that edtech is profoundly value-laden because it has the potential to (i) influence certain values in students; (ii) change educational values in [various] ways; and (iii) change national values (Omotoyinbo & Omotoyinbo, 2016: 173). Most importantly, the growth in the use of educational technology has been accompanied by a change in the way that education itself is viewed: ‘as a tool, a sophisticated supply system of human cognitive resources, in the service of a computerized, technology-driven economy’ (Noble, 1991: 1). These two trends are inextricably linked.

References

Biraimah, K. 1993. The non-neutrality of educational computer software. Computers and Education 20 / 4: 283 – 290

Buzbee, L. 2014. Blackboard: A Personal History of the Classroom. Minneapolis: Graywolf Press

Chomsky, N. 2012. The Purpose of Education (video). Learning Without Frontiers Conference. https://www.youtube.com/watch?v=DdNAUJWJN08

Criado Perez, C. 2019. Invisible Women. London: Chatto & Windus

Fox, R. 2001. Technological neutrality and practice in higher education. In A. Herrmann and M. M. Kulski (Eds), Expanding Horizons in Teaching and Learning. Proceedings of the 10th Annual Teaching Learning Forum, 7-9 February 2001. Perth: Curtin University of Technology. http://clt.curtin.edu.au/events/conferences/tlf/tlf2001/fox.html

Laanpere, M., Poldoja, H. & Kikkas, K. 2004. The second thoughts about pedagogical neutrality of LMS. Proceedings of IEEE International Conference on Advanced Learning Technologies, 2004. https://ieeexplore.ieee.org/abstract/document/1357664

Lane, L. 2009. Insidious pedagogy: How course management systems impact teaching. First Monday, 14(10). https://firstmonday.org/ojs/index.php/fm/article/view/2530/2303Lane

Miller, A.E., MacDougall, J.D., Tarnopolsky, M. A. & Sale, D.G. 1993. ‘Gender differences in strength and muscle fiber characteristics’ European Journal of Applied Physiology and Occupational Physiology. 66(3): 254-62 https://www.ncbi.nlm.nih.gov/pubmed/8477683

Noble, D. D. 1991. The Classroom Arsenal. Abingdon, Oxon.: Routledge

Omotoyinbo, D. W. & Omotoyinbo, F. R. 2016. Educational Technology and Value Neutrality. Societal Studies, 8 / 2: 163 – 179 https://www3.mruni.eu/ojs/societal-studies/article/view/4652/4276

O’Neil, C. 2016. Weapons of Math Destruction. London: Penguin

Sundström, P. Interpreting the Notion that Technology is Value Neutral. Medicine, Health Care and Philosophy 1, 1998: 42-44

Tatman, R. 2017. ‘Gender and Dialect Bias in YouTube’s Automatic Captions’ Proceedings of the First Workshop on Ethics in Natural Language Processing, pp. 53–59 http://www.ethicsinnlp.org/workshop/pdf/EthNLP06.pdf

Wang, C. & Cai, D. 2017. ‘Hand tool handle design based on hand measurements’ MATEC Web of Conferences 119, 01044 (2017) https://www.matec-conferences.org/articles/matecconf/pdf/2017/33/matecconf_imeti2017_01044.pdf

Winner, L. 1980. Do Artifacts have Politics? Daedalus 109 / 1: 121 – 136

Zhao, Y, Alvarez-Torres, M. J., Smith, B. & Tan, H. S. 2004. The Non-neutrality of Technology: a Theoretical Analysis and Empirical Study of Computer Mediated Communication Technologies. Journal of Educational Computing Research 30 (1 &2): 23 – 55

Jargon buster

Posted: January 18, 2019 in Discourse, ed tech
Tags:

With the 2019 educational conference show season about to start, here’s a handy guide to gaining a REAL understanding of the words you’re likely to come across. Please feel free to add in the comments anything I’ve omitted.

iatefl conference

accountability

Keeping the money-people happy.

AI (artificial intelligence)

Ooh! Aah! Yes, please.

analytics (as in learning analytics)

The analysis of student data to reveal crucial insights such as the fact that students who work more, make more progress. Cf. data

AR (augmented reality)

Out-of-date interactive technology with no convincing classroom value. cf. interactive

benchmark

A word for standard that makes you sound like you know what you’re talking about.

blended (as in blended learning)

Homework. Or, if you want to sound more knowledgeable, the way e-learning is being combined with traditional classroom methods and independent study to create a new, hybrid teaching methodology that is shown by research to facilitate better learning outcomes.

bot

A non-unionized, cheap teacher for the masses.

brain-friendly

A word used by people who haven’t read enough neuro-science.

collaborative

Getting other people to help you, and getting praised for doing so.

CPD (continuous professional development)

Unpaid training.

creativity

A good excuse to get out your guitar, recite a few poems and show how sensitive you are. Cf. 21st century skills

curated (as in curated learning content)

Stuff nicked from other websites. A way of getting more personalization for less investment.

customer

The correct way to refer to students. Cf. markets

data

Information about students that can be sold to advertising companies.

design (as in learning design)

Used to mean curriculum by people selling edtech products who aren’t sure what curriculum means.

discovery learning

A myth with a long-gone expiry date.

disruptive (as in disruptive innovation in education)

A word used in utter seriousness by people who dream of getting rich from the privatisation of education.

drones

Handy for speaking and writing exercises, according to elearningindustry.com. They open up a new set of opportunities to make classes more relevant and engaging for students. They can in fact enrich students’ imagination and get them more involved into the learning process.

ecosystem (as in learning ecosystem)

All the different ways that data about learners can be captured, sold or hacked.

EdSurge

The go-to site for ‘news’ about edtech. The company’s goal is ‘to promote the smart adoption of education technology through impartial reporting’ … much of which is paid for by investors in edtech start-ups.

edutainment

PowerPoint, for example.

efficacy

A fancy word for efficiency that nobody bothers with much any more.

empowerment

Not connected to power in any way at all.

engagement

Sticking with something.

flipped (as in flipped classrooms)

Watching educational videos at home.

formative assessment

A critically important tool in the iterative process of maximizing the learning environment and customizing instruction to meet students’ needs. Also known as testing.

gamification

Persuading people to push buttons.

global citizens

Nice people.

immersive

Used to describe a learning activity that is less boring than other learning activities.

inclusive (as in inclusive practices)

Not to be confused with virtue-signalling.

innovative

A meaningless word that sounds good to some people. Interchangeable with cutting-edge and state-of-the-art

interactive

With buttons that can be pushed.

interactive whiteboard

A term you won’t hear this year, except when accompanied with a scoff, because everyone has forgotten it and wants to move on. Cf. 60% of the other terms in this glossary by 2025

(the) knowledge economy

Platform capitalism.

leadership

A smokescreen for poor pay and conditions. Cf. 21st century skills

literacy (as in critical literacy, digital literacy, emotional literacy, media literacy, visual literacy)

A jargon word used to mean that someone can do something.

MALL (Mobile assisted language learning)

Chatting or playing games with your phone in class.

markets

Another contemporary way of referring to students. Cf. customer

mediation

Translating, interpreting and things like that.

mindfulness

An ever-growing industry.

motivation

U.S. education technology companies raised $1.45 billion from venture capitalists and private-equity investors in 2018 (according to EdSurge).

outcomes (as in learning outcomes)

‘Learning’, or whatever, that can be measured.

personalized

A meaningless word useful for selling edtech stuff. Interchangeable with differentiated and individualized.

providers

A euphemism for sellers. Cf. solutions

publisher

An obsolete word for providers of educational learning solutions. Cf. solutions

quality

A bit of management jargon from the last century. It doesn’t really matter if you don’t know exactly what it means – you can define it yourself.

research

A slippery word that is meant to elicit a positive response.

resilience

Also known as grit, the ability to suspend your better judgment and plough on.

scaffolding

Something to do with Vygotsky, but it probably doesn’t matter what exactly. It’s a ‘good thing’.

SEL (Social-Emotional Learning)

A VA (value-added) experience needed by students who spend too long in CAL in a VLE with poor UX.

skills (as in 21st century skills)

The abilities that young people will need for an imagined future workplace. These are to be paid for by the state, rather than the companies that might employ a small number of them on zero-hour contracts.

soft skills

Everything you need to be a compliant employee.

solutions (as in learning solutions)

A euphemism for stuff that someone is trying to sell to schools.

teacherpreneur

A teacher in need of a reality check.

thought leaders (as in educational thought leaders)

Effective self-promoters, usually with no background in education.

transformative

Nothing to do with Transformative Learning Theory (Mezirow) … just another buzz word.

VR

Technology that makes you dizzy.

ltsigIt’s hype time again. Spurred on, no doubt, by the current spate of books and articles  about AIED (artificial intelligence in education), the IATEFL Learning Technologies SIG is organising an online event on the topic in November of this year. Currently, the most visible online references to AI in language learning are related to Glossika , basically a language learning system that uses spaced repetition, whose marketing department has realised that references to AI might help sell the product. GlossikaThey’re not alone – see, for example, Knowble which I reviewed earlier this year .

In the wider world of education, where AI has made greater inroads than in language teaching, every day brings more stuff: How artificial intelligence is changing teaching , 32 Ways AI is Improving Education , How artificial intelligence could help teachers do a better job , etc., etc. There’s a full-length book by Anthony Seldon, The Fourth Education Revolution: will artificial intelligence liberate or infantilise humanity? (2018, University of Buckingham Press) – one of the most poorly researched and badly edited books on education I’ve ever read, although that won’t stop it selling – and, no surprises here, there’s a Pearson commissioned report called Intelligence Unleashed: An argument for AI in Education (2016) which is available free.

Common to all these publications is the claim that AI will radically change education. When it comes to language teaching, a similar claim has been made by Donald Clark (described by Anthony Seldon as an education guru but perhaps best-known to many in ELT for his demolition of Sugata Mitra). In 2017, Clark wrote a blog post for Cambridge English (now unavailable) entitled How AI will reboot language learning, and a more recent version of this post, called AI has and will change language learning forever (sic) is available on Clark’s own blog. Given the history of the failure of education predictions, Clark is making bold claims. Thomas Edison (1922) believed that movies would revolutionize education. Radios were similarly hyped in the 1940s and in the 1960s it was the turn of TV. In the 1980s, Seymour Papert predicted the end of schools – ‘the computer will blow up the school’, he wrote. Twenty years later, we had the interactive possibilities of Web 2.0. As each technology failed to deliver on the hype, a new generation of enthusiasts found something else to make predictions about.

But is Donald Clark onto something? Developments in AI and computational linguistics have recently resulted in enormous progress in machine translation. Impressive advances in automatic speech recognition and generation, coupled with the power that can be packed into a handheld device, mean that we can expect some re-evaluation of the value of learning another language. Stephen Heppell, a specialist at Bournemouth University in the use of ICT in Education, has said: ‘Simultaneous translation is coming, making language teachers redundant. Modern languages teaching in future may be more about navigating cultural differences’ (quoted by Seldon, p.263). Well, maybe, but this is not Clark’s main interest.

Less a matter of opinion and much closer to the present day is the issue of assessment. AI is becoming ubiquitous in language testing. Cambridge, Pearson, TELC, Babbel and Duolingo are all using or exploring AI in their testing software, and we can expect to see this increase. Current, paper-based systems of testing subject knowledge are, according to Rosemary Luckin and Kristen Weatherby, outdated, ineffective, time-consuming, the cause of great anxiety and can easily be automated (Luckin, R. & Weatherby, K. 2018. ‘Learning analytics, artificial intelligence and the process of assessment’ in Luckin, R. (ed.) Enhancing Learning and Teaching with Technology, 2018. UCL Institute of Education Press, p.253). By capturing data of various kinds throughout a language learner’s course of study and by using AI to analyse learning development, continuous formative assessment becomes possible in ways that were previously unimaginable. ‘Assessment for Learning (AfL)’ or ‘Learning Oriented Assessment (LOA)’ are two terms used by Cambridge English to refer to the potential that AI offers which is described by Luckin (who is also one of the authors of the Pearson paper mentioned earlier). In practical terms, albeit in a still very limited way, this can be seen in the CUP course ‘Empower’, which combines CUP course content with validated LOA from Cambridge Assessment English.

Will this reboot or revolutionise language teaching? Probably not and here’s why. AIED systems need to operate with what is called a ‘domain knowledge model’. This specifies what is to be learnt and includes an analysis of the steps that must be taken to reach that learning goal. Some subjects (especially STEM subjects) ‘lend themselves much more readily to having their domains represented in ways that can be automatically reasoned about’ (du Boulay, D. et al., 2018. ‘Artificial intelligences and big data technologies to close the achievement gap’ in Luckin, R. (ed.) Enhancing Learning and Teaching with Technology, 2018. UCL Institute of Education Press, p.258). This is why most AIED systems have been built to teach these areas. Language are rather different. We simply do not have a domain knowledge model, except perhaps for the very lowest levels of language learning (and even that is highly questionable). Language learning is probably not, or not primarily, about acquiring subject knowledge. Debate still rages about the relationship between explicit language knowledge and language competence. AI-driven formative assessment will likely focus most on explicit language knowledge, as does most current language teaching. This will not reboot or revolutionise anything. It will more likely reinforce what is already happening: a model of language learning that assumes there is a strong interface between explicit knowledge and language competence. It is not a model that is shared by most SLA researchers.

So, one thing that AI can do (and is doing) for language learning is to improve the algorithms that determine the way that grammar and vocabulary are presented to individual learners in online programs. AI-optimised delivery of ‘English Grammar in Use’ may lead to some learning gains, but they are unlikely to be significant. It is not, in any case, what language learners need.

AI, Donald Clark suggests, can offer personalised learning. Precisely what kind of personalised learning this might be, and whether or not this is a good thing, remains unclear. A 2015 report funded by the Gates Foundation found that we currently lack evidence about the effectiveness of personalised learning. We do not know which aspects of personalised learning (learner autonomy, individualised learning pathways and instructional approaches, etc.) or which combinations of these will lead to gains in language learning. The complexity of the issues means that we may never have a satisfactory explanation. You can read my own exploration of the problems of personalised learning starting here .

What’s left? Clark suggests that chatbots are one area with ‘huge potential’. I beg to differ and I explained my reasons eighteen months ago . Chatbots work fine in very specific domains. As Clark says, they can be used for ‘controlled practice’, but ‘controlled practice’ means practice of specific language knowledge, the practice of limited conversational routines, for example. It could certainly be useful, but more than that? Taking things a stage further, Clark then suggests more holistic speaking and listening practice with Amazon Echo, Alexa or Google Home. If and when the day comes that we have general, as opposed to domain-specific, AI, chatting with one of these tools would open up vast new possibilities. Unfortunately, general AI does not exist, and until then Alexa and co will remain a poor substitute for human-human interaction (which is readily available online, anyway). Incidentally, AI could be used to form groups of online language learners to carry out communicative tasks – ‘the aim might be to design a grouping of students all at a similar cognitive level and of similar interests, or one where the participants bring different but complementary knowledge and skills’ (Luckin, R., Holmes, W., Griffiths, M. & Forceir, L.B. 2016. Intelligence Unleashed: An argument for AI in Education. London: Pearson, p.26).

Predictions about the impact of technology on education have a tendency to be made by people with a vested interest in the technologies. Edison was a businessman who had invested heavily in motion pictures. Donald Clark is an edtech entrepreneur whose company, Wildfire, uses AI in online learning programs. Stephen Heppell is executive chairman of LP+ who are currently developing a Chinese language learning community for 20 million Chinese school students. The reporting of AIED is almost invariably in websites that are paid for, in one way or another, by edtech companies. Predictions need, therefore, to be treated sceptically. Indeed, the safest prediction we can make about hyped educational technologies is that inflated expectations will be followed by disillusionment, before the technology finds a smaller niche.

 

It’s international ELT conference season again, with TESOL Chicago having just come to a close and IATEFL Brighton soon to start. I decided to take a look at how the subject of personalized learning will be covered at the second of these. Taking the conference programme , I trawled through looking for references to my topic.

Jing_word_cloudMy first question was: how do conference presenters feel about personalised learning? One way of finding out is by looking at the adjectives that are found in close proximity. This is what you get.

The overall enthusiasm is even clearer when the contexts are looked at more closely. Here are a few examples:

  • inspiring assessment, personalising learning
  • personalised training can contribute to professionalism and […] spark ideas for teacher trainers
  • a personalised educational experience that ultimately improves learner outcomes
  • personalised teacher development: is it achievable?

Particularly striking is the complete absence of anything that suggests that personalized learning might not be a ‘good thing’. The assumption throughout is that personalized learning is desirable and the only question that is asked is how it can be achieved. Unfortunately (and however much we might like to believe that it is a ‘good thing’), there is a serious lack of research evidence which demonstrates that this is the case. I have written about this here and here and here . For a useful summary of the current situation, see Benjamin Riley’s article where he writes that ‘it seems wise to ask what evidence we presently have that personalized learning works. Answer: Virtually none. One remarkable aspect of the personalized-learning craze is how quickly the concept has spread despite the almost total absence of rigorous research in support of it, at least thus far.’

Given that personalized learning can mean so many things and given the fact that people do not have space to define their terms in their conference abstracts, it is interesting to see what other aspects of language learning / teaching it is associated with. The four main areas are as follows (in alphabetical order):

  • assessment (especially formative assessment) / learning outcomes
  • continuous professional development
  • learner autonomy
  • technology / blended learning

The IATEFL TD SIG would appear to be one of the main promoters of personalized learning (or personalized teacher development) with a one-day pre-conference event entitled ‘Personalised teacher development – is it achievable?’ and a ‘showcase’ forum entitled ‘Forum on Effective & personalised: the holy grail of CPD’. Amusingly (but coincidentally, I suppose), the forum takes place in the ‘Cambridge room’ (see below).

I can understand why the SIG organisers may have chosen this focus. It’s something of a hot topic, and getting hotter. For example:

  • Cambridge University Press has identified personalization as one of the ‘six key principles of effective teacher development programmes’ and is offering tailor-made teacher development programmes for institutions.
  • NILE and Macmillan recently launched a partnership whose brief is to ‘curate personalised professional development with an appropriate mix of ‘formal’ and ‘informal’ learning delivered online, blended and face to face’.
  • Pearson has developed the Pearson’s Teacher Development Interactive (TDI) – ‘an interactive online course to train and certify teachers to deliver effective instruction in English as a foreign language […] You can complete each module on your own time, at your own pace from anywhere you have access to the internet.’

These examples do not, of course, provide any explanation for why personalized learning is a hot topic, but the answer to that is simple. Money. Billions and billions, and if you want a breakdown, have a look at the appendix of Monica Bulger’s report, ‘Personalized Learning: The Conversations We’re Not Having’ . Starting with Microsoft and the Gates Foundation plus Facebook and the Chan / Zuckerberg Foundation, dozens of venture philanthropists have thrown unimaginable sums of money at the idea of personalized learning. They have backed up their cash with powerful lobbying and their message has got through. Consent has been successfully manufactured.

PearsonOne of the most significant players in this field is Pearson, who have long been one of the most visible promoters of personalized learning (see the screen capture). At IATEFL, two of the ten conference abstracts which include the word ‘personalized’ are directly sponsored by Pearson. Pearson actually have ten presentations they have directly sponsored or are very closely associated with. Many of these do not refer to personalized learning in the abstract, but would presumably do so in the presentations themselves. There is, for example, a report on a professional development programme in Brazil using TDI (see above). There are two talks about the GSE, described as a tool ‘used to provide a personalised view of students’ language’. The marketing intent is clear: Pearson is to be associated with personalized learning (which is, in turn, associated with a variety of tech tools) – they even have a VP of data analytics, data science and personalized learning.

But the direct funding of the message is probably less important these days than the reinforcement, by those with no vested interests, of the set of beliefs, the ideology, which underpin the selling of personalized learning products. According to this script, personalized learning can promote creativity, empowerment, inclusiveness and preparedness for the real world of work. It sets itself up in opposition to lockstep and factory models of education, and sets learners free as consumers in a world of educational choice. It is a message with which it is hard for many of us to disagree.

manufacturing consentIt is also a marvellous example of propaganda, of the way that consent is manufactured. (If you haven’t read it yet, it’s probably time to read Herman and Chomsky’s ‘Manufacturing Consent: The Political Economy of the Mass Media’.) An excellent account of the way that consent for personalized learning has been manufactured can be found at Benjamin Doxtdator’s blog .

So, a hot topic it is, and its multiple inclusion in the conference programme will no doubt be welcomed by those who are selling ‘personalized’ products. It must be very satisfying to see how normalised the term has become, how it’s no longer necessary to spend too much on promoting the idea, how it’s so associated with technology, (formative) assessment, autonomy and teacher development … since others are doing it for you.