Archive for October, 2015

51Fgn6C4sWL__SY344_BO1,204,203,200_Decent research into adaptive learning remains very thin on the ground. Disappointingly, the Journal of Learning Analytics has only managed one issue so far in 2015, compared to three in 2014. But I recently came across an article in Vol. 18 (pp. 111 – 125) of  Informing Science: the International Journal of an Emerging Transdiscipline entitled Informing and performing: A study comparing adaptive learning to traditional learning by Murray, M. C., & Pérez, J. of Kennesaw State University.

The article is worth reading, not least because of the authors’ digestible review of  adaptive learning theory and their discussion of levels of adaptation, including a handy diagram (see below) which they have reproduced from a white paper by Tyton Partners ‘Learning to Adapt: Understanding the Adaptive Learning Supplier Landscape’. Murray and Pérez make clear that adaptive learning theory is closely connected to the belief that learning is improved when instruction is personalized — adapted to individual learning styles, but their approach is surprisingly uncritical. They write, for example, that the general acceptance of learning styles is evidenced in recommended teaching strategies in nearly every discipline, and learning styles continue to inform the evolution of adaptive learning systems, and quote from the much-quoted Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008) Learning styles: concepts and evidence, Psychological Science in the Public Interest, 9, 105–119. But Pashler et al concluded that the current evidence supporting the use of learning style-matched approaches is virtually non-existent (see here for a review of Pashler et al). And, in the world of ELT, an article in the latest edition of ELTJ by Carol Lethaby and Patricia Harries disses learning styles and other neuromyths. Given the close connection between adaptive learning theory and learning styles, one might reasonably predict that a comparative study of adaptive learning and traditional learning would not come out with much evidence in support of the former.

adaptive_taxonomyMurray and Pérez set out, anyway, to explore the hypothesis that adapting instruction to an individual’s learning style results in better learning outcomes. Their study compared adaptive and traditional methods in a university-level digital literacy course. Their conclusion? This study and a few others like it indicate that today’s adaptive learning systems have negligible impact on learning outcomes.

I was, however, more interested in the comments which followed this general conclusion. They point out that learning outcomes are only one measure of quality. Others, such as student persistence and engagement, they claim, can be positively affected by the employment of adaptive systems. I am not convinced. I think it’s simply far too soon to be able to judge this, and we need to wait quite some time for novelty effects to wear off. Murray and Pérez provide two references in support of their claim. One is an article by Josh Jarrett, Bigfoot, Goldilocks, and Moonshots: A Report from the Frontiers of Personalized Learning in Educause. Jarrett is Deputy Director for Postsecondary Success at the Bill & Melinda Gates Foundation and Educause is significantly funded by the Gates Foundation. Not, therefore, an entirely unbiased and trustworthy source. The other is a journalistic piece in Forbes. It’s by Tim Zimmer, entitled Rethinking higher ed: A case for adaptive learning and it reads like an advert. Zimmer is a ‘CCAP contributor’. CCAP is the Centre for College Affordability and Productivity, a libertarian, conservative foundation with a strong privatization agenda. Not, therefore, a particularly reliable source, either.

Despite their own findings, Murray and Pérez follow up their claim about student persistence and engagement with what they describe as a more compelling still argument for adaptive learning. This, they say, is the intuitively appealing case for adaptive learning systems as engines with which institutions can increase access and reduce costs. Ah, now we’re getting to the point!

 

 

 

 

 

 

 

.

 

 

 

 

Advertisements

VocApp – a review

Posted: October 28, 2015 in apps
Tags: , , ,

Go to an app store and you’ll find a number of unrelated products called VocApp. One of them, from a Polish-based outfit, has the https://vocapp.com/ url. From over 30 products in the catalogue, I selected the free ‘Top 1000 English Words’: this is, after all, the showcase app which will show you how fast and easy you can learn with us (sic). VocApp Founder, Marcin Młodzki, writes that learning languages and mobile devices are my two greatest passions. Unfortunately there wasn’t any language app on the market which satisfied me in 100% (or even in 70%…). Anki, Babel, DuoLingo, Memorize, Quizlet – each of them has some serious disadvantages. So I decided to create my own app. Prof. Ewa Lajer-Burchardt of Harvard University says it’s undoubtedly one of the best flashcard applications for learning foreign languages on the educational market. This is presumably the eminent Ewa Lajer-Burcharth, a Polish art historian and author of Necklines: The Art of Jacques-Louis David After the Terror. So, how does the app stand up? Will users raise their understanding up to 83%? I was impatient to find out.common english wordsIt’s a flashcard system with spaced repetition. This particular app has target items and audio recordings on one side of the flashcard, definitions in English, along with illustrations, on the other. It is, the makers say, multisensory. Users are then given two self-evaluation options.

ab

And that, I’m afraid, is about all there is to say. Apart, that is, from the content. Many of the definitions have been culled from Wiktionary, not perhaps the best source of definitions for A1 / A2 learners. Others appear to have been made up in-house. Here is an opportunity to raise your own understanding by up to 83%. Look at the VocApp definitions below and see if you can guess what the target word is (answers below[i]).

1 a piece of a whole

2 a) a kind of box b) a formal word for a situation

3 something people do every day e.g. from 10 o’clock to 4 o’clock to get money

4 a group of people who deal with politics and who give new rules

5 when we are born our life begins, when we die our life comes to an end.

6 an object

7 a) where the cars drive b) a method of doing something

8 The place where we live, not only the Earth, everything which exists; ‘world’ is a general world

9 a location of something

10 a) 24 hours b) when the sun is up, not night

Sorry, Marcin. I’m afraid your app didn’t satisfy me in 100% (or even in 70%…).

[i] Answers: 1 part 2 case 3 work 4 government 5 life 6 thing 7 way 8 world 9 place 10 day

MosaLingua  (with the obligatory capital letter in the middle) is a vocabulary app, available for iOS and Android. There are packages for a number of languages and English variations include general English, business English, vocabulary for TOEFL and vocabulary for TOEIC. The company follows the freemium model, with free ‘Lite’ versions and fuller content selling for €4.99. I tried the ‘Lite’ general English app, opting for French as my first language. Since the app is translation-based, you need to have one of the language pairings that are on offer (the other languages are currently Italian, Spanish, Portuguese and German).Mosalingua

The app I looked at is basically a phrase book with spaced repetition. Even though this particular app was general English, it appeared to be geared towards the casual business traveller. It uses the same algorithm as Anki, and users are taken through a sequence of (1) listening to an audio recording of the target item (word or phrase) along with the possibility of comparing a recording of yourself with the recording provided, (2) standard bilingual flashcard practice, (3) a practice stage where you are given the word or phrase in your own language and you have to unscramble words or letters to form the equivalent in English, and (4) a self-evaluation stage where users select from one of four options (“review”, “hard”, “good”, “perfect”) where the choice made will influence the re-presentation of the item within the spaced repetition.

In addition to these words and phrases, there are a number of dialogues where you (1) listen to the dialogue (‘without worrying about understanding everything’), (2) are re-exposed to the dialogue with English subtitles, (3) see it again with subtitles in your own language, (4) practise it with standard flashcards.

The developers seem to be proud of their Mosa Learning Method®: they’ve registered this as a trademark. At its heart is spaced repetition. This is supplemented by what they refer to as ‘Active Recall’, the notion that things are better memorised if the learner has to make some sort of cognitive effort, however minimal, in recalling the target items. The principle is, at least to me, unquestionable, but the realisation (unjumbling words or letters) becomes rather repetitive and, ultimately, tedious. Then, there is what they call ‘metacognition’. Again, this is informed by research, even if the realisation (self-evaluation of learning difficulty into four levels) is extremely limited. Then there is the Pareto principle  – the 80-20 rule. I couldn’t understand the explanation of what this has to do with the trademarked method. Here’s the MosaLingua explanation  – figure it out for yourself:

Did you know that the 100 most common words in English account for half of the written corpus?

Evidently, you shouldn’t quit after learning only 100 words. Instead, you should concentrate on the most frequently used words and you’ll make spectacular progress. What’s more, globish (global English) has shown that it’s possible to express yourself using only 1500 well-chosen words (which would take less than 3 months with only 10 minutes per day with MosaLingua). Once you’ve acquired this base, MosaLingua proposes specialized vocabulary suited to your needs (the application has over 3000 words).

Finally, there’s some stuff about motivation and learner psychology. This boils down to That’s why we offer free learning help via email, presenting the Web’s best resources, as well as tips through bonus material or the learning community on the MosaLingua blog. We’ll give you all the tools you need to develop your own personalized learning method that is adapted to your needs. Some of these tips are not at all bad, but there’s precious little in the way of gamification or other forms of easy motivation.

In short, it’s all reasonably respectable, despite the predilection for sciency language in the marketing blurb. But what really differentiates this product from Anki, as the founder, Samuel Michelot, points out is the content. Mosalingua has lists of vocabulary and phrases that were created by professors. The word ‘professors’ set my alarm bells ringing, and I wasn’t overly reassured when all I could find out about these ‘professors’ was the information about the MosaLingua team .professors

Despite what some people  claim, content is, actually, rather important when it comes to language learning. I’ll leave you with some examples of MosaLingua content (one dialogue and a selection of words / phrases organised by level) and you can make up your own mind.

Dialogue

Hi there, have a seat. What seems to be the problem?

I haven’t been feeling well since this morning. I have a very bad headache and I feel sick.

Do you feel tired? Have you had cold sweats?

Yes, I’m very tired and have had cold sweats. I have been feeling like that since this morning.

Have you been out in the sun?

Yes, this morning I was at the beach with my friends for a couple hours.

OK, it’s nothing serious. It’s just a bad case of sunstroke. You must drink lots of water and rest. I’ll prescribe you something for the headache and some after sun lotion.

Great, thank you, doctor. Bye.

You’re welcome. Bye.

Level 1: could you help me, I would like a …, I need to …, I don’t know, it’s okay, I (don’t) agree, do you speak English, to drink, to sleep, bank, I’m going to call the police

Level 2: I’m French, cheers, can you please repeat that, excuse me how can I get to …, map, turn left, corner, far (from), distance, thief, can you tell me where I can find …

Level 3: what does … mean, I’m learning English, excuse my English, famous, there, here, until, block, from, to turn, street corner, bar, nightclub, I have to be at the airport tomorrow morning

Level 4: OK, I’m thirty (years old), I love this country, how do you say …, what is it, it’s a bit like …, it’s a sort of …, it’s as small / big as …, is it far, where are we, where are we going, welcome, thanks but I can’t, how long have you been here, is this your first trip to England, take care, district / neighbourhood, in front (of)

Level 5: of course, can I ask you a question, you speak very well, I can’t find the way, David this is Julia, we meet at last, I would love to, where do you want to go, maybe another day, I’ll miss you, leave me alone, don’t touch me, what’s you email

Level 6: I’m here on a business trip, I came with some friends, where are the nightclubs, I feel like going to a bar, I can pick you up at your house, let’s go to see a movie, we had a lot of fun, come again, thanks for the invitation

In ELT circles, ‘behaviourism’ is a boo word. In the standard history of approaches to language teaching (characterised as a ‘procession of methods’ by Hunter & Smith 2012: 432[1]), there were the bad old days of behaviourism until Chomsky came along, savaged the theory in his review of Skinner’s ‘Verbal Behavior’, and we were all able to see the light. In reality, of course, things weren’t quite like that. The debate between Chomsky and the behaviourists is far from over, behaviourism was not the driving force behind the development of audiolingual approaches to language teaching, and audiolingualism is far from dead. For an entertaining and eye-opening account of something much closer to reality, I would thoroughly recommend a post on Russ Mayne’s Evidence Based ELT blog, along with the discussion which follows it. For anyone who would like to understand what behaviourism is, was, and is not (before they throw the term around as an insult), I’d recommend John A. Mills’ ‘Control: A History of Behavioral Psychology’ (New York University Press, 1998) and John Staddon’s ‘The New Behaviorism 2nd edition’ (Psychology Press, 2014).

There is a close connection between behaviourism and adaptive learning. Audrey Watters, no fan of adaptive technology, suggests that ‘any company touting adaptive learning software’ has been influenced by Skinner. In a more extended piece, ‘Education Technology and Skinner’s Box, Watters explores further her problems with Skinner and the educational technology that has been inspired by behaviourism. But writers much more sympathetic to adaptive learning, also see close connections to behaviourism. ‘The development of adaptive learning systems can be considered as a transformation of teaching machines,’ write Kara & Sevim[2] (2013: 114 – 117), although they go on to point out the differences between the two. Vendors of adaptive learning products, like DreamBox Learning©, are not shy of associating themselves with behaviourism: ‘Adaptive learning has been with us for a while, with its history of adaptive learning rooted in cognitive psychology, beginning with the work of behaviorist B.F. Skinner in the 1950s, and continuing through the artificial intelligence movement of the 1970s.’

That there is a strong connection between adaptive learning and behaviourism is indisputable, but I am not interested in attempting to establish the strength of that connection. This would, in any case, be an impossible task without some reductionist definition of both terms. Instead, my interest here is to explore some of the parallels between the two, and, in the spirit of the topic, I’d like to do this by comparing the behaviours of behaviourists and adaptive learning scientists.

Data and theory

Both behaviourism and adaptive learning (in its big data form) are centrally concerned with behaviour – capturing and measuring it in an objective manner. In both, experimental observation and the collection of ‘facts’ (physical, measurable, behavioural occurrences) precede any formulation of theory. John Mills’ description of behaviourists could apply equally well to adaptive learning scientists: theory construction was a seesaw process whereby one began with crude outgrowths from observations and slowly created one’s theory in such a way that one could make more and more precise observations, building those observations into the theory at each stage. No behaviourist ever considered the possibility of taking existing comprehensive theories of mind and testing or refining them.[3]

Positivism and the panopticon

Both behaviourism and adaptive learning are pragmatically positivist, believing that truth can be established by the study of facts. J. B. Watson, the founding father of behaviourism whose article ‘Psychology as the Behaviorist Views Itset the behaviourist ball rolling, believed that experimental observation could ‘reveal everything that can be known about human beings’[4]. Jose Ferreira of Knewton has made similar claims: We get five orders of magnitude more data per user than Google does. We get more data about people than any other data company gets about people, about anything — and it’s not even close. We’re looking at what you know, what you don’t know, how you learn best. […] We know everything about what you know and how you learn best because we get so much data. Digital data analytics offer something that Watson couldn’t have imagined in his wildest dreams, but he would have approved.

happiness industryThe revolutionary science

Big data (and the adaptive learning which is a part of it) is presented as a game-changer: The era of big data challenges the way we live and interact with the world. […] Society will need to shed some of its obsession for causality in exchange for simple correlations: not knowing why but only what. This overturns centuries of established practices and challenges our most basic understanding of how to make decisions and comprehend reality[5]. But the reverence for technology and the ability to reach understandings of human beings by capturing huge amounts of behavioural data was adumbrated by Watson a century before big data became a widely used term. Watson’s 1913 lecture at Columbia University was ‘a clear pitch’[6] for the supremacy of behaviourism, and its potential as a revolutionary science.

Prediction and controlnudge

The fundamental point of both behaviourism and adaptive learning is the same. The research practices and the theorizing of American behaviourists until the mid-1950s, writes Mills[7] were driven by the intellectual imperative to create theories that could be used to make socially useful predictions. Predictions are only useful to the extent that they can be used to manipulate behaviour. Watson states this very baldly: the theoretical goal of psychology is the prediction and control of behaviour[8]. Contemporary iterations of behaviourism, such as behavioural economics or nudge theory (see, for example, Thaler & Sunstein’s best-selling ‘Nudge’, Penguin Books, 2008), or the British government’s Behavioural Insights Unit, share the same desire to divert individual activity towards goals (selected by those with power), ‘without either naked coercion or democratic deliberation’[9]. Jose Ferreira of Knewton has an identical approach: We can predict failure in advance, which means we can pre-remediate it in advance. We can say, “Oh, she’ll struggle with this, let’s go find the concept from last year’s materials that will help her not struggle with it.” Like the behaviourists, Ferreira makes grand claims about the social usefulness of his predict-and-control technology: The end is a really simple mission. Only 22% of the world finishes high school, and only 55% finish sixth grade. Those are just appalling numbers. As a species, we’re wasting almost four-fifths of the talent we produce. […] I want to solve the access problem for the human race once and for all.

Ethics

Because they rely on capturing large amounts of personal data, both behaviourism and adaptive learning quickly run into ethical problems. Even where informed consent is used, the subjects must remain partly ignorant of exactly what is being tested, or else there is the fear that they might adjust their behaviour accordingly. The goal is to minimise conscious understanding of what is going on[10]. For adaptive learning, the ethical problem is much greater because of the impossibility of ensuring the security of this data. Everything is hackable.

Marketing

Behaviourism was seen as a god-send by the world of advertising. J. B. Watson, after a front-page scandal about his affair with a student, and losing his job at John Hopkins University, quickly found employment on Madison Avenue. ‘Scientific advertising’, as practised by the Mad Men from the 1920s onwards, was based on behaviourism. The use of data analytics by Google, Amazon, et al is a direct descendant of scientific advertising, so it is richly appropriate that adaptive learning is the child of data analytics.

[1] Hunter, D. and Smith, R. (2012) ‘Unpacking the past: “CLT” through ELTJ keywords’. ELT Journal, 66/4: 430-439.

[2] Kara, N. & Sevim, N. 2013. ‘Adaptive learning systems: beyond teaching machines’, Contemporary Educational Technology, 4(2), 108-120

[3] Mills, J. A. (1998) Control: A History of Behavioral Psychology. New York: New York University Press, p.5

[4] Davies, W. (2015) The Happiness Industry. London: Verso. p.91

[5] Mayer-Schönberger, V. & Cukier, K. (2013) Big Data. London: John Murray, p.7

[6] Davies, W. (2015) The Happiness Industry. London: Verso. p.87

[7] Mills, J. A. (1998) Control: A History of Behavioral Psychology. New York: New York University Press, p.2

[8] Watson, J. B. (1913) ‘Behaviorism as the Psychologist Views it’ Psychological Review 20: 158

[9] Davies, W. (2015) The Happiness Industry. London: Verso. p.88

[10] Davies, W. (2015) The Happiness Industry. London: Verso. p.92