Posts Tagged ‘big data’

Back in the middle of the last century, the first interactive machines for language teaching appeared. Previously, there had been phonograph discs and wire recorders (Ornstein, 1968: 401), but these had never really taken off. This time, things were different. Buoyed by a belief in the power of technology, along with the need (following the Soviet Union’s successful Sputnik programme) to demonstrate the pre-eminence of the United States’ technological expertise, the interactive teaching machines that were used in programmed instruction promised to revolutionize language learning (Valdman, 1968: 1). From coast to coast, ‘tremors of excitement ran through professional journals and conferences and department meetings’ (Kennedy, 1967: 871). The new technology was driven by hard science, supported and promoted by the one of the most well-known and respected psychologists and public intellectuals of the day (Skinner, 1961).

In classrooms, the machines acted as powerfully effective triggers in generating situational interest (Hidi & Renninger, 2006). Even more exciting than the mechanical teaching machines were the computers that were appearing on the scene. ‘Lick’ Licklider, a pioneer in interactive computing at the Advanced Research Projects Agency in Arlington, Virginia, developed an automated drill routine for learning German by hooking up a computer, two typewriters, an oscilloscope and a light pen (Noble, 1991: 124). Students loved it, and some would ‘go on and on, learning German words until they were forced by scheduling to cease their efforts’. Researchers called the seductive nature of the technology ‘stimulus trapping’, and Licklider hoped that ‘before [the student] gets out from under the control of the computer’s incentives, [they] will learn enough German words’ (Noble, 1991: 125).

With many of the developed economies of the world facing a critical shortage of teachers, ‘an urgent pedagogical emergency’ (Hof, 2018), the new approach was considered to be extremely efficient and could equalise opportunity in schools across the country. It was ‘here to stay: [it] appears destined to make progress that could well go beyond the fondest dreams of its originators […] an entire industry is just coming into being and significant sales and profits should not be too long in coming’ (Kozlowski, 1961: 47).

Unfortunately, however, researchers and entrepreneurs had massively underestimated the significance of novelty effects. The triggered situational interest of the machines did not lead to intrinsic individual motivation. Students quickly tired of, and eventually came to dislike, programmed instruction and the machines that delivered it (McDonald et al.: 2005: 89). What’s more, the machines were expensive and ‘research studies conducted on its effectiveness showed that the differences in achievement did not constantly or substantially favour programmed instruction over conventional instruction (Saettler, 2004: 303). Newer technologies, with better ‘stimulus trapping’, were appearing. Programmed instruction lost its backing and disappeared, leaving as traces only its interest in clearly defined learning objectives, the measurement of learning outcomes and a concern with the efficiency of learning approaches.

Hot on the heels of programmed instruction came the language laboratory. Futuristic in appearance, not entirely unlike the deck of the starship USS Enterprise which launched at around the same time, language labs captured the public imagination and promised to explore the final frontiers of language learning. As with the earlier teaching machines, students were initially enthusiastic. Even today, when language labs are introduced into contexts where they may be perceived as new technology, they can lead to high levels of initial motivation (e.g. Ramganesh & Janaki, 2017).

Given the huge investments into these labs, it’s unfortunate that initial interest waned fast. By 1969, many of these rooms had turned into ‘“electronic graveyards,” sitting empty and unused, or perhaps somewhat glorified study halls to which students grudgingly repair to don headphones, turn down the volume, and prepare the next period’s history or English lesson, unmolested by any member of the foreign language faculty’ (Turner, 1969: 1, quoted in Roby, 2003: 527). ‘Many second language students shudder[ed] at the thought of entering into the bowels of the “language laboratory” to practice and perfect the acoustical aerobics of proper pronunciation skills. Visions of sterile white-walled, windowless rooms, filled with endless bolted-down rows of claustrophobic metal carrels, and overseen by a humorless, lab director, evoke[d] fear in the hearts of even the most stout-hearted prospective second-language learners (Wiley, 1990: 44).

By the turn of this century, language labs had mostly gone, consigned to oblivion by the appearance of yet newer technology: the internet, laptops and smartphones. Education had been on the brink of being transformed through new learning technologies for decades (Laurillard, 2008: 1), but this time it really was different. It wasn’t just one technology that had appeared, but a whole slew of them: ‘artificial intelligence, learning analytics, predictive analytics, adaptive learning software, school management software, learning management systems (LMS), school clouds. No school was without these and other technologies branded as ‘superintelligent’ by the late 2020s’ (Macgilchrist et al., 2019). The hardware, especially phones, was ubiquitous and, therefore, free. Unlike teaching machines and language laboratories, students were used to using the technology and expected to use their devices in their studies.

A barrage of publicity, mostly paid for by the industry, surrounded the new technologies. These would ‘meet the demands of Generation Z’, the new generation of students, now cast as consumers, who ‘were accustomed to personalizing everything’.  AR, VR, interactive whiteboards, digital projectors and so on made it easier to ‘create engaging, interactive experiences’. The ‘New Age’ technologies made learning fun and easy,  ‘bringing enthusiasm among the students, improving student engagement, enriching the teaching process, and bringing liveliness in the classroom’. On top of that, they allowed huge amounts of data to be captured and sold, whilst tracking progress and attendance. In any case, resistance to digital technology, said more than one language teaching expert, was pointless (Styring, 2015).slide

At the same time, technology companies increasingly took on ‘central roles as advisors to national governments and local districts on educational futures’ and public educational institutions came to be ‘regarded by many as dispensable or even harmful’ (Macgilchrist et al., 2019).

But, as it turned out, the students of Generation Z were not as uniformly enthusiastic about the new technology as had been assumed, and resistance to digital, personalized delivery in education was not long in coming. In November 2018, high school students at Brooklyn’s Secondary School for Journalism staged a walkout in protest at their school’s use of Summit Learning, a web-based platform promoting personalized learning developed by Facebook. They complained that the platform resulted in coursework requiring students to spend much of their day in front of a computer screen, that made it easy to cheat by looking up answers online, and that some of their teachers didn’t have the proper training for the curriculum (Leskin, 2018). Besides, their school was in a deplorable state of disrepair, especially the toilets. There were similar protests in Kansas, where students staged sit-ins, supported by their parents, one of whom complained that ‘we’re allowing the computers to teach and the kids all looked like zombies’ before pulling his son out of the school (Bowles, 2019). In Pennsylvania and Connecticut, some schools stopped using Summit Learning altogether, following protests.

But the resistance did not last. Protesters were accused of being nostalgic conservatives and educationalists kept largely quiet, fearful of losing their funding from the Chan Zuckerberg Initiative (Facebook) and other philanthro-capitalists. The provision of training in grit, growth mindset, positive psychology and mindfulness (also promoted by the technology companies) was ramped up, and eventually the disaffected students became more quiescent. Before long, the data-intensive, personalized approach, relying on the tools, services and data storage of particular platforms had become ‘baked in’ to educational systems around the world (Moore, 2018: 211). There was no going back (except for small numbers of ultra-privileged students in a few private institutions).

By the middle of the century (2155), most students, of all ages, studied with interactive screens in the comfort of their homes. Algorithmically-driven content, with personalized, adaptive tests had become the norm, but the technology occasionally went wrong, leading to some frustration. One day, two young children discovered a book in their attic. Made of paper with yellow, crinkly pages, where ‘the words stood still instead of moving the way they were supposed to’. The book recounted the experience of schools in the distant past, where ‘all the kids from the neighbourhood came’, sitting in the same room with a human teacher, studying the same things ‘so they could help one another on the homework and talk about it’. Margie, the younger of the children at 11 years old, was engrossed in the book when she received a nudge from her personalized learning platform to return to her studies. But Margie was reluctant to go back to her fractions. She ‘was thinking about how the kids must have loved it in the old days. She was thinking about the fun they had’ (Asimov, 1951).

References

Asimov, I. 1951. The Fun They Had. Accessed September 20, 2019. http://web1.nbed.nb.ca/sites/ASD-S/1820/J%20Johnston/Isaac%20Asimov%20-%20The%20fun%20they%20had.pdf

Bowles, N. 2019. ‘Silicon Valley Came to Kansas Schools. That Started a Rebellion’ The New York Times, April 21. Accessed September 20, 2019. https://www.nytimes.com/2019/04/21/technology/silicon-valley-kansas-schools.html

Hidi, S. & Renninger, K.A. 2006. ‘The Four-Phase Model of Interest Development’ Educational Psychologist, 41 (2), 111 – 127

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47 (4): 445-465

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 (6): 47 – 54

Laurillard, D. 2008. Digital Technologies and their Role in Achieving our Ambitions for Education. London: Institute for Education.

Leskin, P. 2018. ‘Students in Brooklyn protest their school’s use of a Zuckerberg-backed online curriculum that Facebook engineers helped build’ Business Insider, 12.11.18 Accessed 20 September 2019. https://www.businessinsider.de/summit-learning-school-curriculum-funded-by-zuckerberg-faces-backlash-brooklyn-2018-11?r=US&IR=T

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 (2): 84 – 98

Macgilchrist, F., Allert, H. & Bruch, A. 2019. ‚Students and society in the 2020s. Three future ‘histories’ of education and technology’. Learning, Media and Technology, https://www.tandfonline.com/doi/full/10.1080/17439884.2019.1656235 )

Moore, M. 2018. Democracy Hacked. London: Oneworld

Noble, D. D. 1991. The Classroom Arsenal. London: The Falmer Press

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 (7), 401 – 410

Ramganesh, E. & Janaki, S. 2017. ‘Attitude of College Teachers towards the Utilization of Language Laboratories for Learning English’ Asian Journal of Social Science Studies; Vol. 2 (1): 103 – 109

Roby, W.B. 2003. ‘Technology in the service of foreign language teaching: The case of the language laboratory’ In D. Jonassen (ed.), Handbook of Research on Educational Communications and Technology, 2nd ed.: 523 – 541. Mahwah, NJ.: Lawrence Erlbaum Associates

Saettler, P. 2004. The Evolution of American Educational Technology. Greenwich, Conn.: Information Age Publishing

Skinner, B. F. 1961. ‘Teaching Machines’ Scientific American, 205(5), 90-107

Styring, J. 2015. Engaging Generation Z. Cambridge English webinar 2015 https://www.youtube.com/watch?time_continue=4&v=XCxl4TqgQZA

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14.

Wiley, P. D. 1990. ‘Language labs for 1990: User-friendly, expandable and affordable’. Media & Methods, 27(1), 44–47)

jenny-holzer-untitled-protect-me-from-what-i-want-text-displayed-in-times-square-nyc-1982

Jenny Holzer, Protect me from what I want

Advertisements

At a recent ELT conference, a plenary presentation entitled ‘Getting it right with edtech’ (sponsored by a vendor of – increasingly digital – ELT products) began with the speaker suggesting that technology was basically neutral, that what you do with educational technology matters far more than the nature of the technology itself. The idea that technology is a ‘neutral tool’ has a long pedigree and often accompanies exhortations to embrace edtech in one form or another (see for example Fox, 2001). It is an idea that is supported by no less a luminary than Chomsky, who, in a 2012 video entitled ‘The Purpose of Education’ (Chomsky, 2012), said that:

As far as […] technology […] and education is concerned, technology is basically neutral. It’s kind of like a hammer. I mean, […] the hammer doesn’t care whether you use it to build a house or whether a torturer uses it to crush somebody’s skull; a hammer can do either. The same with the modern technology; say, the Internet, and so on.

Womans hammerAlthough hammers are not usually classic examples of educational technology, they are worthy of a short discussion. Hammers come in all shapes and sizes and when you choose one, you need to consider its head weight (usually between 16 and 20 ounces), the length of the handle, the shape of the grip, etc. Appropriate specifications for particular hammering tasks have been calculated in great detail. The data on which these specifications is based on an analysis of the hand size and upper body strength of the typical user. The typical user is a man, and the typical hammer has been designed for a man. The average male hand length is 177.9 mm, that of the average woman is 10 mm shorter (Wang & Cai, 2017). Women typically have about half the upper body strength of men (Miller et al., 1993). It’s possible, but not easy to find hammers designed for women (they are referred to as ‘Ladies hammers’ on Amazon). They have a much lighter head weight, a shorter handle length, and many come in pink or floral designs. Hammers, in other words, are far from neutral: they are highly gendered.

Moving closer to educational purposes and ways in which we might ‘get it right with edtech’, it is useful to look at the smart phone. The average size of these devices has risen in recent years, and is now 5.5 inches, with the market for 6 inch screens growing fast. Why is this an issue? Well, as Caroline Criado Perez (2019: 159) notes, ‘while we’re all admittedly impressed by the size of your screen, it’s a slightly different matter when it comes to fitting into half the population’s hands. The average man can fairly comfortably use his device one-handed – but the average woman’s hand is not much bigger than the handset itself’. This is despite the fact the fact that women are more likely to own an iPhone than men  .

It is not, of course, just technological artefacts that are gendered. Voice-recognition software is also very biased. One researcher (Tatman, 2017) has found that Google’s speech recognition tool is 13% more accurate for men than it is for women. There are also significant biases for race and social class. The reason lies in the dataset that the tool is trained on: the algorithms may be gender- and socio-culturally-neutral, but the dataset is not. It would not be difficult to redress this bias by training the tool on a different dataset.

The same bias can be found in automatic translation software. Because corpora such as the BNC or COCA have twice as many male pronouns as female ones (as a result of the kinds of text that are selected for the corpora), translation software reflects the bias. With Google Translate, a sentence in a language with a gender-neutral pronoun, such as ‘S/he is a doctor’ is rendered into English as ‘He is a doctor’. Meanwhile, ‘S/he is a nurse’ is translated as ‘She is a nurse’ (Criado Perez, 2019: 166).

Datasets, then, are often very far from neutral. Algorithms are not necessarily any more neutral than the datasets, and Cathy O’Neil’s best-seller ‘Weapons of Math Destruction’ catalogues the many, many ways in which algorithms, posing as neutral mathematical tools, can increase racial, social and gender inequalities.

It would not be hard to provide many more examples, but the selection above is probably enough. Technology, as Langdon Winner (Winner, 1980) observed almost forty years ago, is ‘deeply interwoven in the conditions of modern politics’. Technology cannot be neutral: it has politics.

So far, I have focused primarily on the non-neutrality of technology in terms of gender (and, in passing, race and class). Before returning to broader societal issues, I would like to make a relatively brief mention of another kind of non-neutrality: the pedagogic. Language learning materials necessarily contain content of some kind: texts, topics, the choice of values or role models, language examples, and so on. These cannot be value-free. In the early days of educational computer software, one researcher (Biraimah, 1993) found that it was ‘at least, if not more, biased than the printed page it may one day replace’. My own impression is that this remains true today.

Equally interesting to my mind is the fact that all educational technologies, ranging from the writing slate to the blackboard (see Buzbee, 2014), from the overhead projector to the interactive whiteboard, always privilege a particular kind of teaching (and learning). ‘Technologies are inherently biased because they are built to accomplish certain very specific goals which means that some technologies are good for some tasks while not so good for other tasks’ (Zhao et al., 2004: 25). Digital flashcards, for example, inevitably encourage a focus on rote learning. Contemporary LMSs have impressive multi-functionality (i.e. they often could be used in a very wide variety of ways), but, in practice, most teachers use them in very conservative ways (Laanpere et al., 2004). This may be a result of teacher and institutional preferences, but it is almost certainly due, at least in part, to the way that LMSs are designed. They are usually ‘based on traditional approaches to instruction dating from the nineteenth century: presentation and assessment [and] this can be seen in the selection of features which are most accessible in the interface, and easiest to use’ (Lane, 2009).

The argument that educational technology is neutral because it could be put to many different uses, good or bad, is problematic because the likelihood of one particular use is usually much greater than another. There is, however, another way of looking at technological neutrality, and that is to look at its origins. Elsewhere on this blog, in post after post, I have given examples of the ways in which educational technology has been developed, marketed and sold primarily for commercial purposes. Educational values, if indeed there are any, are often an afterthought. The research literature in this area is rich and growing: Stephen Ball, Larry Cuban, Neil Selwyn, Joel Spring, Audrey Watters, etc.

Rather than revisit old ground here, this is an opportunity to look at a slightly different origin of educational technology: the US military. The close connection of the early history of the internet and the Advanced Research Projects Agency (now DARPA) of the United States Department of Defense is fairly well-known. Much less well-known are the very close connections between the US military and educational technologies, which are catalogued in the recently reissued ‘The Classroom Arsenal’ by Douglas D. Noble.

Following the twin shocks of the Soviet Sputnik 1 (in 1957) and Yuri Gagarin (in 1961), the United States launched a massive programme of investment in the development of high-tech weaponry. This included ‘computer systems design, time-sharing, graphics displays, conversational programming languages, heuristic problem-solving, artificial intelligence, and cognitive science’ (Noble, 1991: 55), all of which are now crucial components in educational technology. But it also quickly became clear that more sophisticated weapons required much better trained operators, hence the US military’s huge (and continuing) interest in training. Early interest focused on teaching machines and programmed instruction (branches of the US military were by far the biggest purchasers of programmed instruction products). It was essential that training was effective and efficient, and this led to a wide interest in the mathematical modelling of learning and instruction.

What was then called computer-based education (CBE) was developed as a response to military needs. The first experiments in computer-based training took place at the Systems Research Laboratory of the Air Force’s RAND Corporation think tank (Noble, 1991: 73). Research and development in this area accelerated in the 1960s and 1970s and CBE (which has morphed into the platforms of today) ‘assumed particular forms because of the historical, contingent, military contexts for which and within which it was developed’ (Noble, 1991: 83). It is possible to imagine computer-based education having developed in very different directions. Between the 1960s and 1980s, for example, the PLATO (Programmed Logic for Automatic Teaching Operations) project at the University of Illinois focused heavily on computer-mediated social interaction (forums, message boards, email, chat rooms and multi-player games). PLATO was also significantly funded by a variety of US military agencies, but proved to be of much less interest to the generals than the work taking place in other laboratories. As Noble observes, ‘some technologies get developed while others do not, and those that do are shaped by particular interests and by the historical and political circumstances surrounding their development (Noble, 1991: 4).

According to Noble, however, the influence of the military reached far beyond the development of particular technologies. Alongside the investment in technologies, the military were the prime movers in a campaign to promote computer literacy in schools.

Computer literacy was an ideological campaign rather than an educational initiative – a campaign designed, at bottom, to render people ‘comfortable’ with the ‘inevitable’ new technologies. Its basic intent was to win the reluctant acquiescence of an entire population in a brave new world sculpted in silicon.

The computer campaign also succeeded in getting people in front of that screen and used to having computers around; it made people ‘computer-friendly’, just as computers were being rendered ‘used-friendly’. It also managed to distract the population, suddenly propelled by the urgency of learning about computers, from learning about other things, such as how computers were being used to erode the quality of their working lives, or why they, supposedly the citizens of a democracy, had no say in technological decisions that were determining the shape of their own futures.

Third, it made possible the successful introduction of millions of computers into schools, factories and offices, even homes, with minimal resistance. The nation’s public schools have by now spent over two billion dollars on over a million and a half computers, and this trend still shows no signs of abating. At this time, schools continue to spend one-fifth as much on computers, software, training and staffing as they do on all books and other instructional materials combined. Yet the impact of this enormous expenditure is a stockpile of often idle machines, typically used for quite unimaginative educational applications. Furthermore, the accumulated results of three decades of research on the effectiveness of computer-based instruction remain ‘inconclusive and often contradictory’. (Noble, 1991: x – xi)

Rather than being neutral in any way, it seems more reasonable to argue, along with (I think) most contemporary researchers, that edtech is profoundly value-laden because it has the potential to (i) influence certain values in students; (ii) change educational values in [various] ways; and (iii) change national values (Omotoyinbo & Omotoyinbo, 2016: 173). Most importantly, the growth in the use of educational technology has been accompanied by a change in the way that education itself is viewed: ‘as a tool, a sophisticated supply system of human cognitive resources, in the service of a computerized, technology-driven economy’ (Noble, 1991: 1). These two trends are inextricably linked.

References

Biraimah, K. 1993. The non-neutrality of educational computer software. Computers and Education 20 / 4: 283 – 290

Buzbee, L. 2014. Blackboard: A Personal History of the Classroom. Minneapolis: Graywolf Press

Chomsky, N. 2012. The Purpose of Education (video). Learning Without Frontiers Conference. https://www.youtube.com/watch?v=DdNAUJWJN08

Criado Perez, C. 2019. Invisible Women. London: Chatto & Windus

Fox, R. 2001. Technological neutrality and practice in higher education. In A. Herrmann and M. M. Kulski (Eds), Expanding Horizons in Teaching and Learning. Proceedings of the 10th Annual Teaching Learning Forum, 7-9 February 2001. Perth: Curtin University of Technology. http://clt.curtin.edu.au/events/conferences/tlf/tlf2001/fox.html

Laanpere, M., Poldoja, H. & Kikkas, K. 2004. The second thoughts about pedagogical neutrality of LMS. Proceedings of IEEE International Conference on Advanced Learning Technologies, 2004. https://ieeexplore.ieee.org/abstract/document/1357664

Lane, L. 2009. Insidious pedagogy: How course management systems impact teaching. First Monday, 14(10). https://firstmonday.org/ojs/index.php/fm/article/view/2530/2303Lane

Miller, A.E., MacDougall, J.D., Tarnopolsky, M. A. & Sale, D.G. 1993. ‘Gender differences in strength and muscle fiber characteristics’ European Journal of Applied Physiology and Occupational Physiology. 66(3): 254-62 https://www.ncbi.nlm.nih.gov/pubmed/8477683

Noble, D. D. 1991. The Classroom Arsenal. Abingdon, Oxon.: Routledge

Omotoyinbo, D. W. & Omotoyinbo, F. R. 2016. Educational Technology and Value Neutrality. Societal Studies, 8 / 2: 163 – 179 https://www3.mruni.eu/ojs/societal-studies/article/view/4652/4276

O’Neil, C. 2016. Weapons of Math Destruction. London: Penguin

Sundström, P. Interpreting the Notion that Technology is Value Neutral. Medicine, Health Care and Philosophy 1, 1998: 42-44

Tatman, R. 2017. ‘Gender and Dialect Bias in YouTube’s Automatic Captions’ Proceedings of the First Workshop on Ethics in Natural Language Processing, pp. 53–59 http://www.ethicsinnlp.org/workshop/pdf/EthNLP06.pdf

Wang, C. & Cai, D. 2017. ‘Hand tool handle design based on hand measurements’ MATEC Web of Conferences 119, 01044 (2017) https://www.matec-conferences.org/articles/matecconf/pdf/2017/33/matecconf_imeti2017_01044.pdf

Winner, L. 1980. Do Artifacts have Politics? Daedalus 109 / 1: 121 – 136

Zhao, Y, Alvarez-Torres, M. J., Smith, B. & Tan, H. S. 2004. The Non-neutrality of Technology: a Theoretical Analysis and Empirical Study of Computer Mediated Communication Technologies. Journal of Educational Computing Research 30 (1 &2): 23 – 55

The use of big data and analytics in education continues to grow.

A vast apparatus of measurement is being developed to underpin national education systems, institutions and the actions of the individuals who occupy them. […] The presence of digital data and software in education is being amplified through massive financial and political investment in educational technologies, as well as huge growth in data collection and analysis in policymaking practices, extension of performance measurement technologies in the management of educational institutions, and rapid expansion of digital methodologies in educational research. To a significant extent, many of the ways in which classrooms function, educational policy departments and leaders make decisions, and researchers make sense of data, simply would not happen as currently intended without the presence of software code and the digital data processing programs it enacts. (Williamson, 2017: 4)

The most common and successful use of this technology so far has been in the identification of students at risk of dropping out of their courses (Jørno & Gynther, 2018: 204). The kind of analytics used in this context may be called ‘academic analytics’ and focuses on educational processes at the institutional level or higher (Gelan et al, 2018: 3). However, ‘learning analytics’, the capture and analysis of learner and learning data in order to personalize learning ‘(1) through real-time feedback on online courses and e-textbooks that can ‘learn’ from how they are used and ‘talk back’ to the teacher, and (2) individualization and personalization of the educational experience through adaptive learning systems that enable materials to be tailored to each student’s individual needs through automated real-time analysis’ (Mayer-Schönberger & Cukier, 2014) has become ‘the main keyword of data-driven education’ (Williamson, 2017: 10). See my earlier posts on this topic here and here and here.

Learning with big dataNear the start of Mayer-Schönberger and Cukier’s enthusiastic sales pitch (Learning with Big Data: The Future of Education) for the use of big data in education, there is a discussion of Duolingo. They quote Luis von Ahn, the founder of Duolingo, as saying ‘there has been little empirical work on what is the best way to teach a foreign language’. This is so far from the truth as to be laughable. Von Ahn’s comment, along with the Duolingo product itself, is merely indicative of a lack of awareness of the enormous amount of research that has been carried out. But what could the data gleaned from the interactions of millions of users with Duolingo tell us of value? The example that is given is the following. Apparently, ‘in the case of Spanish speakers learning English, it’s common to teach pronouns early on: words like “he,” “she,” and “it”.’ But, Duolingo discovered, ‘the term “it” tends to confuse and create anxiety for Spanish speakers, since the word doesn’t easily translate into their language […] Delaying the introduction of “it” until a few weeks later dramatically improves the number of people who stick with learning English rather than drop out.’ Was von Ahn unaware of the decades of research into language transfer effects? Did von Ahn (who grew up speaking Spanish in Guatemala) need all this data to tell him that English personal pronouns can cause problems for Spanish learners of English? Was von Ahn unaware of the debates concerning the value of teaching isolated words (especially grammar words!)?

The area where little empirical research has been done is not in different ways of learning another language: it is in the use of big data and learning analytics to assist language learning. Claims about the value of these technologies in language learning are almost always speculative – they are based on comparison to other school subjects (especially, mathematics). Gelan et al (2018: 2), who note this lack of research, suggest that ‘understanding language learner behaviour could provide valuable insights into task design for instructors and materials designers, as well as help students with effective learning strategies and personalised learning pathways’ (my italics). Reinders (2018: 81) writes ‘that analysis of prior experiences with certain groups or certain courses may help to identify key moments at which students need to receive more or different support. Analysis of student engagement and performance throughout a course may help with early identification of learning problems and may prompt early intervention’ (italics added). But there is some research out there, and it’s worth having a look at. Most studies that have collected learner-tracking data concern glossary use for reading comprehension and vocabulary retention (Gelan et al, 2018: 5), but a few have attempted to go further in scope.

Volk et al (2015) looked at the behaviour of the 20,000 students per day using the platform which accompanies ‘More!’ (Gerngross et al. 2008) to do their English homework for Austrian lower secondary schools. They discovered that

  • the exercises used least frequently were those that are located further back in the course book
  • usage is highest from Monday to Wednesday, declining from Thursday, with a rise again on Sunday
  • most interaction took place between 3:00 and 5:00 pm.
  • repetition of exercises led to a strong improvement in success rate
  • students performed better on multiple choice and matching exercises than they did where they had to produce some language

The authors of this paper conclude by saying that ‘the results of this study suggest a number of new avenues for research. In general, the authors plan to extend their analysis of exercise results and applied exercises to the population of all schools using the online learning platform more-online.at. This step enables a deeper insight into student’s learning behaviour and allows making more generalizing statements.’ When I shared these research findings with the Austrian lower secondary teachers that I work with, their reaction was one of utter disbelief. People get paid to do this research? Why not just ask us?

More useful, more actionable insights may yet come from other sources. For example, Gu Yueguo, Pro-Vice-Chancellor of the Beijing Foreign Studies University has announced the intention to set up a national Big Data research center, specializing in big data-related research topics in foreign language education (Yu, 2015). Meanwhile, I’m aware of only one big research project that has published its results. The EC Erasmus+ VITAL project (Visualisation Tools and Analytics to monitor Online Language Learning & Teaching) was carried out between 2015 and 2017 and looked at the learning trails of students from universities in Belgium, Britain and the Netherlands. It was discovered (Gelan et al, 2015) that:

  • students who did online exercises when they were supposed to do them were slightly more successful than those who were late carrying out the tasks
  • successful students logged on more often, spent more time online, attempted and completed more tasks, revisited both exercises and theory pages more frequently, did the work in the order in which it was supposed to be done and did more work in the holidays
  • most students preferred to go straight into the assessed exercises and only used the theory pages when they felt they needed to; successful students referred back to the theory pages more often than unsuccessful students
  • students made little use of the voice recording functionality
  • most online activity took place the day before a class and the day of the class itself

EU funding for this VITAL project amounted to 274,840 Euros[1]. The technology for capturing the data has been around for a long time. In my opinion, nothing of value, or at least nothing new, has been learnt. Publishers like Pearson and Cambridge University Press who have large numbers of learners using their platforms have been capturing learning data for many years. They do not publish their findings and, intriguingly, do not even claim that they have learnt anything useful / actionable from the data they have collected. Sure, an exercise here or there may need to be amended. Both teachers and students may need more support in using the more open-ended functionalities of the platforms (e.g. discussion forums). But are they getting ‘unprecedented insights into what works and what doesn’t’ (Mayer-Schönberger & Cukier, 2014)? Are they any closer to building better pedagogies? On the basis of what we know so far, you wouldn’t want to bet on it.

It may be the case that all the learning / learner data that is captured could be used in some way that has nothing to do with language learning. Show me a language-learning app developer who does not dream of monetizing the ‘behavioural surplus’ (Zuboff, 2018) that they collect! But, for the data and analytics to be of any value in guiding language learning, it must lead to actionable insights. Unfortunately, as Jørno & Gynther (2018: 198) point out, there is very little clarity about what is meant by ‘actionable insights’. There is a danger that data and analytics ‘simply gravitates towards insights that confirm longstanding good practice and insights, such as “students tend to ignore optional learning activities … [and] focus on activities that are assessed” (Jørno & Gynther, 2018: 211). While this is happening, the focus on data inevitably shapes the way we look at the object of study (i.e. language learning), ‘thereby systematically excluding other perspectives’ (Mau, 2019: 15; see also Beer, 2019). The belief that tech is always the solution, that all we need is more data and better analytics, remains very powerful: it’s called techno-chauvinism (Broussard, 2018: 7-8).

References

Beer, D. 2019. The Data Gaze. London: Sage

Broussard, M. 2018. Artificial Unintelligence. Cambridge, Mass.: MIT Press

Gelan, A., Fastre, G., Verjans, M., Martin, N., Jansenswillen, G., Creemers, M., Lieben, J., Depaire, B. & Thomas, M. 2018. ‘Affordances and limitations of learning analytics for computer­assisted language learning: a case study of the VITAL project’. Computer Assisted Language Learning. pp. 1­26. http://clok.uclan.ac.uk/21289/

Gerngross, G., Puchta, H., Holzmann, C., Stranks, J., Lewis-Jones, P. & Finnie, R. 2008. More! 1 Cyber Homework. Innsbruck, Austria: Helbling

Jørno, R. L. & Gynther, K. 2018. ‘What Constitutes an “Actionable Insight” in Learning Analytics?’ Journal of Learning Analytics 5 (3): 198 – 221

Mau, S. 2019. The Metric Society. Cambridge: Polity Press

Mayer-Schönberger, V. & Cukier, K. 2014. Learning with Big Data: The Future of Education. New York: Houghton Mifflin Harcourt

Reinders, H. 2018. ‘Learning analytics for language learning and teaching’. JALT CALL Journal 14 / 1: 77 – 86 https://files.eric.ed.gov/fulltext/EJ1177327.pdf

Volk, H., Kellner, K. & Wohlhart, D. 2015. ‘Learning Analytics for English Language Teaching.’ Journal of Universal Computer Science, Vol. 21 / 1: 156-174 http://www.jucs.org/jucs_21_1/learning_analytics_for_english/jucs_21_01_0156_0174_volk.pdf

Williamson, B. 2017. Big Data in Education. London: Sage

Yu, Q. 2015. ‘Learning Analytics: The next frontier for computer assisted language learning in big data age’ SHS Web of Conferences, 17 https://www.shs-conferences.org/articles/shsconf/pdf/2015/04/shsconf_icmetm2015_02013.pdf

Zuboff, S. 2019. The Age of Surveillance Capitalism. London: Profile Books

 

[1] See https://ec.europa.eu/programmes/erasmus-plus/sites/erasmusplus2/files/ka2-2015-he_en.pdf

Learners are different, the argument goes, so learning paths will be different, too. And, the argument continues, if learners will benefit from individualized learning pathways, so instruction should be based around an analysis of the optimal learning pathways for individuals and tailored to match them. In previous posts, I have questioned whether such an analysis is meaningful or reliable and whether the tailoring leads to any measurable learning gains. In this post, I want to focus primarily on the analysis of learner differences.

Family / social background and previous educational experiences are obvious ways in which learners differ when they embark on any course of study. The way they impact on educational success is well researched and well established. Despite this research, there are some who disagree. For example, Dominic Cummings (former adviser to Michael Gove when he was UK Education minister and former campaign director of the pro-Brexit Vote Leave group) has argued  that genetic differences, especially in intelligence, account for more than 50% of the differences in educational achievement.

Cummings got his ideas from Robert Plomin , one of the world’s most cited living psychologists. Plomin, in a recent paper in Nature, ‘The New Genetics of Intelligence’ , argues that ‘intelligence is highly heritable and predicts important educational, occupational and health outcomes better than any other trait’. In an earlier paper, ‘Genetics affects choice of academic subjects as well as achievement’, Plomin and his co-authors argued that ‘choosing to do A-levels and the choice of subjects show substantial genetic influence, as does performance after two years studying the chosen subjects’. Environment matters, says Plomin , but it’s possible that genes matter more.

All of which leads us to the field known as ‘educational genomics’. In an article of breathless enthusiasm entitled ‘How genetics could help future learners unlock hidden potential’ , University of Sussex psychologist, Darya Gaysina, describes educational genomics as the use of ‘detailed information about the human genome – DNA variants – to identify their contribution to particular traits that are related to education [… ] it is thought that one day, educational genomics could enable educational organisations to create tailor-made curriculum programmes based on a pupil’s DNA profile’. It could, she writes, ‘enable schools to accommodate a variety of different learning styles – both well-worn and modern – suited to the individual needs of the learner [and] help society to take a decisive step towards the creation of an education system that plays on the advantages of genetic background. Rather than the current system, that penalises those individuals who do not fit the educational mould’.

The goal is not just personalized learning. It is ‘Personalized Precision Education’ where researchers ‘look for patterns in huge numbers of genetic factors that might explain behaviors and achievements in individuals. It also focuses on the ways that individuals’ genotypes and environments interact, or how other “epigenetic” factors impact on whether and how genes become active’. This will require huge amounts of ‘data gathering from learners and complex analysis to identify patterns across psychological, neural and genetic datasets’. Why not, suggests Darya Gaysina, use the same massive databases that are being used to identify health risks and to develop approaches to preventative medicine?

BG-for-educationIf I had a spare 100 Euros, I (or you) could buy Darya Gaysina’s book, ‘Behavioural Genetics for Education’ (Palgrave Macmillan, 2016) and, no doubt, I’d understand the science better as a result. There is much about the science that seems problematic, to say the least (e.g. the definition and measurement of intelligence, the lack of reference to other research that suggests academic success is linked to non-genetic factors), but it isn’t the science that concerns me most. It’s the ethics. I don’t share Gaysina’s optimism that ‘every child in the future could be given the opportunity to achieve their maximum potential’. Her utopianism is my fear of Gattaca-like dystopias. IQ testing, in its early days, promised something similarly wonderful, but look what became of that. When you already have reporting of educational genomics using terms like ‘dictate’, you have to fear for the future of Gaysina’s brave new world.

Futurism.pngEducational genomics could equally well lead to expectations of ‘certain levels of achievement from certain groups of children – perhaps from different socioeconomic or ethnic groups’ and you can be pretty sure it will lead to ‘companies with the means to assess students’ genetic identities [seeking] to create new marketplaces of products to sell to schools, educators and parents’. The very fact that people like Dominic Cummings (described by David Cameron as a ‘career psychopath’ ) have opted to jump on this particular bandwagon is, for me, more than enough cause for concern.

Underlying my doubts about educational genomics is a much broader concern. It’s the apparent belief of educational genomicists that science can provide technical solutions to educational problems. It’s called ‘solutionism’ and it doesn’t have a pretty history.

440px-HydraOrganization_HeadLike the mythical monster, the ancient Hydra organisation of Marvel Comics grows two more heads if one is cut off, becoming more powerful in the process. With the most advanced technology on the planet and with a particular focus on data gathering, Hydra operates through international corporations and highly-placed individuals in national governments.
Personalized learning has also been around for centuries. Its present incarnation can be traced to the individualized instructional programmes of the late 19th century which ‘focused on delivering specific subject matter […] based on the principles of scientific management. The intent was to solve the practical problems of the classroom by reducing waste and increasing efficiency, effectiveness, and cost containment in education (Januszewski, 2001: 58). Since then, personalized learning has adopted many different names, including differentiated instruction, individualized instruction, individually guided education, programmed instruction, personalized learning, personalized instruction, and individually prescribed instruction.
Disambiguating the terms has never been easy. In the world of language learning / teaching, it was observed back in the early 1970s ‘that there is little agreement on the description and definition of individualized foreign language instruction’ (Garfinkel, 1971: 379). The point was echoed a few years later by Grittner (1975: 323): it ‘means so many things to so many different people’. A UNESCO document (Chaix & O’Neil, 1978: 6) complained that ‘the term ‘individualization’ and the many expressions using the same root, such as ‘individualized learning’, are much too ambiguous’. Zoom forward to the present day and nothing has changed. Critiquing the British government’s focus on personalized learning, the Institute for Public Policy Research (Johnson, 2004: 17) wrote that it ‘remains difficult to be certain what the Government means by personalised learning’. In the U.S. context, a piece by Sean Cavanagh (2014) in Education Week (which is financially supported by the Gates Foundation) noted that although ‘the term “personalized learning” seems to be everywhere, there is not yet a shared understanding of what it means’. In short, as Arthur Levine  has put it, the words personalized learning ‘generate more heat than light’.
Despite the lack of clarity about what precisely personalized learning actually is, it has been in the limelight of language teaching and learning since before the 1930s when Pendleton (1930: 195) described the idea as being more widespread than ever before. Zoom forward to the 1970s and we find it described as ‘one of the major movements in second-language education at the present time’ (Chastain, 1975: 334). In 1971, it was described as ‘a bandwagon onto which foreign language teachers at all levels are jumping’ (Altman & Politzer, 1971: 6). A little later, in the 1980s, ‘words or phrases such as ‘learner-centered’, ‘student-centered’, ‘personalized’, ‘individualized’, and ‘humanized’ appear as the most frequent modifiers of ‘instruction’ in journals and conferences of foreign language education (Altman & James, 1980). Continue to the present day, and we find that personalized learning is at the centre of the educational policies of governments across the world. Between 2012 and 2015, the U.S. Department of Education threw over half a billion dollars at personalized learning initiatives (Bulger, 2016: 22). At the same time, there is massive sponsorship of personalized learning from the biggest international corporations (the William and Flora Hewlett Foundation, Rogers Family Foundation, Susan and Michael Dell Foundation, and the Eli and Edythe Broad Foundation) (Bulger, 2016: 22). The Bill & Melinda Gates Foundation has invested nearly $175 million in personalized learning development and Facebook’s Mark Zuckerberg is ploughing billions of dollars into it.
There has, however, been one constant: the belief that technology can facilitate the process of personalization (whatever that might be). Technology appears to offer the potential to realise the goal of personalized learning. We have come a long way from Sydney Pressey’s attempts in the 1920s to use teaching machines to individualize instruction. At that time, the machines were just one part of the programme (and not the most important). But each new technology has offered a new range of possibilities to be exploited and each new technology, its advocates argue, ‘will solve the problems better than previous efforts’ (Ferster, 2014: xii). With the advent of data-capturing learning technologies, it has now become virtually impossible to separate advocacy of personalized instruction from advocacy of digitalization in education. As the British Department for Education has put it ‘central to personalised learning is schools’ use of data (DfES (2005) White Paper: Higher Standards, Better Schools for All. London, Department for Education and Skills, para 4.50). When the U.S. Department of Education threw half a billion dollars at personalized learning initiatives, the condition was that these projects ‘use collaborative, data-based strategies and 21st century tools to deliver instruction’ (Bulger, 2016: 22).
Is it just a coincidence that the primary advocates of personalized learning are either vendors of technology or are very close to them in the higher echelons of Hydra (World Economic Forum, World Bank, IMF, etc.)? ‘Personalized learning’ has ‘almost no descriptive value’: it is ‘a term that sounds good without the inconvenience of having any obviously specific pedagogical meaning’ (Feldstein & Hill, 2016: 30). It evokes positive responses, with its ‘nod towards more student-centered learning […], a move that honors the person learning not just the learning institution’ (Watters, 2014). As such, it is ‘a natural for marketing purposes’ since nobody in their right mind would want unpersonalized or depersonalized learning (Feldstein & Hill, 2016: 25). It’s ‘a slogan that nobody’s going to be against, and everybody’s going to be for. Nobody knows what it means, because it doesn’t mean anything. Its crucial value is that it diverts your attention from a question that does mean something: Do you support our policy?’ (Chomsky, 1997).
None of the above is intended to suggest that there might not be goals that come under the ‘personalized learning’ umbrella that are worth working towards. But that’s another story – one I will return to in another post. For the moment, it’s just worth remembering that, in one of the Marvel Comics stories, Captain America, who appeared to be fighting the depersonalized evils of the world, was actually a deep sleeper agent for Hydra.

References
Altman, H.B. & James, C.V. (eds.) 1980. Foreign Language Teaching: Meeting Individual Needs. Oxford: Pergamon Press
Altman, H.B. & Politzer, R.L. (eds.) 1971. Individualizing Foreign Language Instruction: Proceedings of the Stanford Conference, May 6 – 8, 1971. Washington, D.C.: Office of Education, U.S. Department of Health, Education, and Welfare
Bulger, M. 2016. Personalized Learning: The Conversations We’re Not Having. New York: Data and Society Research Institute.
Cavanagh, S. 2014. ‘What Is ‘Personalized Learning’? Educators Seek Clarity’ Education Week
Chaix, P., & O’Neil, C. 1978. A Critical Analysis of Forms of Autonomous Learning (Autodidaxy and Semi-autonomy in the Field of Foreign Language Learning. Final Report. UNESCO Doc Ed 78/WS/58
Chastain, K. 1975. ‘An Examination of the Basic Assumptions of “Individualized” Instruction’ The Modern Language Journal 59 / 7: 334 – 344
Chomsky, N. 1997. Media Control: The Spectacular Achievements of Propaganda. New York: Seven Stories Press
Feldstein, M. & Hill, P. 2016. ‘Personalized Learning: What it Really is and why it Really Matters’ EduCause Review March / April 2016: 25 – 35
Ferster, B. 2014. Teaching Machines. Baltimore: John Hopkins University Press
Garfinkel, A. 1971. ‘Stanford University Conference on Individualizing Foreign Language Instruction, May 6-8, 1971.’ The Modern Language Journal Vol. 55, No. 6 (Oct., 1971), pp. 378-381
Grittner, F. M. 1975. ‘Individualized Instruction: An Historical Perspective’ The Modern Language Journal 59 / 7: 323 – 333
Januszewski, A. 2001. Educational Technology: The Development of a Concept. Englewood, Colorado: Libraries Unlimited
Johnson, M. 2004. Personalised Learning – an Emperor’s Outfit? London: Institute for Public Policy Research
Pendleton, C. S. 1930. ‘Personalizing English Teaching’ Peabody Journal of Education 7 / 4: 195 – 200
Watters, A. 2014. The problem with ‘personalization’ Hack Education

About two and a half years ago when I started writing this blog, there was a lot of hype around adaptive learning and the big data which might drive it. Two and a half years are a long time in technology. A look at Google Trends suggests that interest in adaptive learning has been pretty static for the last couple of years. It’s interesting to note that 3 of the 7 lettered points on this graph are Knewton-related media events (including the most recent, A, which is Knewton’s latest deal with Hachette) and 2 of them concern McGraw-Hill. It would be interesting to know whether these companies follow both parts of Simon Cowell’s dictum of ‘Create the hype, but don’t ever believe it’.

Google_trends

A look at the Hype Cycle (see here for Wikipedia’s entry on the topic and for criticism of the hype of Hype Cycles) of the IT research and advisory firm, Gartner, indicates that both big data and adaptive learning have now slid into the ‘trough of disillusionment’, which means that the market has started to mature, becoming more realistic about how useful the technologies can be for organizations.

A few years ago, the Gates Foundation, one of the leading cheerleaders and financial promoters of adaptive learning, launched its Adaptive Learning Market Acceleration Program (ALMAP) to ‘advance evidence-based understanding of how adaptive learning technologies could improve opportunities for low-income adults to learn and to complete postsecondary credentials’. It’s striking that the program’s aims referred to how such technologies could lead to learning gains, not whether they would. Now, though, with the publication of a report commissioned by the Gates Foundation to analyze the data coming out of the ALMAP Program, things are looking less rosy. The report is inconclusive. There is no firm evidence that adaptive learning systems are leading to better course grades or course completion. ‘The ultimate goal – better student outcomes at lower cost – remains elusive’, the report concludes. Rahim Rajan, a senior program office for Gates, is clear: ‘There is no magical silver bullet here.’

The same conclusion is being reached elsewhere. A report for the National Education Policy Center (in Boulder, Colorado) concludes: Personalized Instruction, in all its many forms, does not seem to be the transformational technology that is needed, however. After more than 30 years, Personalized Instruction is still producing incremental change. The outcomes of large-scale studies and meta-analyses, to the extent they tell us anything useful at all, show mixed results ranging from modest impacts to no impact. Additionally, one must remember that the modest impacts we see in these meta-analyses are coming from blended instruction, which raises the cost of education rather than reducing it (Enyedy, 2014: 15 -see reference at the foot of this post). In the same vein, a recent academic study by Meg Coffin Murray and Jorge Pérez (2015, ‘Informing and Performing: A Study Comparing Adaptive Learning to Traditional Learning’) found that ‘adaptive learning systems have negligible impact on learning outcomes’.

future-ready-learning-reimagining-the-role-of-technology-in-education-1-638In the latest educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Reimagining the Role of Technology in Education’, 2016) the only mentions of the word ‘adaptive’ are in the context of testing. And the latest OECD report on ‘Students, Computers and Learning: Making the Connection’ (2015), finds, more generally, that information and communication technologies, when they are used in the classroom, have, at best, a mixed impact on student performance.

There is, however, too much money at stake for the earlier hype to disappear completely. Sponsored cheerleading for adaptive systems continues to find its way into blogs and national magazines and newspapers. EdSurge, for example, recently published a report called ‘Decoding Adaptive’ (2016), sponsored by Pearson, that continues to wave the flag. Enthusiastic anecdotes take the place of evidence, but, for all that, it’s a useful read.

In the world of ELT, there are plenty of sales people who want new products which they can call ‘adaptive’ (and gamified, too, please). But it’s striking that three years after I started following the hype, such products are rather thin on the ground. Pearson was the first of the big names in ELT to do a deal with Knewton, and invested heavily in the company. Their relationship remains close. But, to the best of my knowledge, the only truly adaptive ELT product that Pearson offers is the PTE test.

Macmillan signed a contract with Knewton in May 2013 ‘to provide personalized grammar and vocabulary lessons, exam reviews, and supplementary materials for each student’. In December of that year, they talked up their new ‘big tree online learning platform’: ‘Look out for the Big Tree logo over the coming year for more information as to how we are using our partnership with Knewton to move forward in the Language Learning division and create content that is tailored to students’ needs and reactive to their progress.’ I’ve been looking out, but it’s all gone rather quiet on the adaptive / platform front.

In September 2013, it was the turn of Cambridge to sign a deal with Knewton ‘to create personalized learning experiences in its industry-leading ELT digital products for students worldwide’. This year saw the launch of a major new CUP series, ‘Empower’. It has an online workbook with personalized extra practice, but there’s nothing (yet) that anyone would call adaptive. More recently, Cambridge has launched the online version of the 2nd edition of Touchstone. Nothing adaptive there, either.

Earlier this year, Cambridge published The Cambridge Guide to Blended Learning for Language Teaching, edited by Mike McCarthy. It contains a chapter by M.O.Z. San Pedro and R. Baker on ‘Adaptive Learning’. It’s an enthusiastic account of the potential of adaptive learning, but it doesn’t contain a single reference to language learning or ELT!

So, what’s going on? Skepticism is becoming the order of the day. The early hype of people like Knewton’s Jose Ferreira is now understood for what it was. Companies like Macmillan got their fingers badly burnt when they barked up the wrong tree with their ‘Big Tree’ platform.

Noel Enyedy captures a more contemporary understanding when he writes: Personalized Instruction is based on the metaphor of personal desktop computers—the technology of the 80s and 90s. Today’s technology is not just personal but mobile, social, and networked. The flexibility and social nature of how technology infuses other aspects of our lives is not captured by the model of Personalized Instruction, which focuses on the isolated individual’s personal path to a fixed end-point. To truly harness the power of modern technology, we need a new vision for educational technology (Enyedy, 2014: 16).

Adaptive solutions aren’t going away, but there is now a much better understanding of what sorts of problems might have adaptive solutions. Testing is certainly one. As the educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Re-imagining the Role of Technology in Education’, 2016) puts it: Computer adaptive testing, which uses algorithms to adjust the difficulty of questions throughout an assessment on the basis of a student’s responses, has facilitated the ability of assessments to estimate accurately what students know and can do across the curriculum in a shorter testing session than would otherwise be necessary. In ELT, Pearson and EF have adaptive tests that have been well researched and designed.

Vocabulary apps which deploy adaptive technology continue to become more sophisticated, although empirical research is lacking. Automated writing tutors with adaptive corrective feedback are also developing fast, and I’ll be writing a post about these soon. Similarly, as speech recognition software improves, we can expect to see better and better automated adaptive pronunciation tutors. But going beyond such applications, there are bigger questions to ask, and answers to these will impact on whatever direction adaptive technologies take. Large platforms (LMSs), with or without adaptive software, are already beginning to look rather dated. Will they be replaced by integrated apps, or are apps themselves going to be replaced by bots (currently riding high in the Hype Cycle)? In language learning and teaching, the future of bots is likely to be shaped by developments in natural language processing (another topic about which I’ll be blogging soon). Nobody really has a clue where the next two and a half years will take us (if anywhere), but it’s becoming increasingly likely that adaptive learning will be only one very small part of it.

 

Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning. Boulder, CO: National Education Policy Center. Retrieved 17.07.16 from http://nepc.colorado.edu/publication/personalized-instruction

In ELT circles, ‘behaviourism’ is a boo word. In the standard history of approaches to language teaching (characterised as a ‘procession of methods’ by Hunter & Smith 2012: 432[1]), there were the bad old days of behaviourism until Chomsky came along, savaged the theory in his review of Skinner’s ‘Verbal Behavior’, and we were all able to see the light. In reality, of course, things weren’t quite like that. The debate between Chomsky and the behaviourists is far from over, behaviourism was not the driving force behind the development of audiolingual approaches to language teaching, and audiolingualism is far from dead. For an entertaining and eye-opening account of something much closer to reality, I would thoroughly recommend a post on Russ Mayne’s Evidence Based ELT blog, along with the discussion which follows it. For anyone who would like to understand what behaviourism is, was, and is not (before they throw the term around as an insult), I’d recommend John A. Mills’ ‘Control: A History of Behavioral Psychology’ (New York University Press, 1998) and John Staddon’s ‘The New Behaviorism 2nd edition’ (Psychology Press, 2014).

There is a close connection between behaviourism and adaptive learning. Audrey Watters, no fan of adaptive technology, suggests that ‘any company touting adaptive learning software’ has been influenced by Skinner. In a more extended piece, ‘Education Technology and Skinner’s Box, Watters explores further her problems with Skinner and the educational technology that has been inspired by behaviourism. But writers much more sympathetic to adaptive learning, also see close connections to behaviourism. ‘The development of adaptive learning systems can be considered as a transformation of teaching machines,’ write Kara & Sevim[2] (2013: 114 – 117), although they go on to point out the differences between the two. Vendors of adaptive learning products, like DreamBox Learning©, are not shy of associating themselves with behaviourism: ‘Adaptive learning has been with us for a while, with its history of adaptive learning rooted in cognitive psychology, beginning with the work of behaviorist B.F. Skinner in the 1950s, and continuing through the artificial intelligence movement of the 1970s.’

That there is a strong connection between adaptive learning and behaviourism is indisputable, but I am not interested in attempting to establish the strength of that connection. This would, in any case, be an impossible task without some reductionist definition of both terms. Instead, my interest here is to explore some of the parallels between the two, and, in the spirit of the topic, I’d like to do this by comparing the behaviours of behaviourists and adaptive learning scientists.

Data and theory

Both behaviourism and adaptive learning (in its big data form) are centrally concerned with behaviour – capturing and measuring it in an objective manner. In both, experimental observation and the collection of ‘facts’ (physical, measurable, behavioural occurrences) precede any formulation of theory. John Mills’ description of behaviourists could apply equally well to adaptive learning scientists: theory construction was a seesaw process whereby one began with crude outgrowths from observations and slowly created one’s theory in such a way that one could make more and more precise observations, building those observations into the theory at each stage. No behaviourist ever considered the possibility of taking existing comprehensive theories of mind and testing or refining them.[3]

Positivism and the panopticon

Both behaviourism and adaptive learning are pragmatically positivist, believing that truth can be established by the study of facts. J. B. Watson, the founding father of behaviourism whose article ‘Psychology as the Behaviorist Views Itset the behaviourist ball rolling, believed that experimental observation could ‘reveal everything that can be known about human beings’[4]. Jose Ferreira of Knewton has made similar claims: We get five orders of magnitude more data per user than Google does. We get more data about people than any other data company gets about people, about anything — and it’s not even close. We’re looking at what you know, what you don’t know, how you learn best. […] We know everything about what you know and how you learn best because we get so much data. Digital data analytics offer something that Watson couldn’t have imagined in his wildest dreams, but he would have approved.

happiness industryThe revolutionary science

Big data (and the adaptive learning which is a part of it) is presented as a game-changer: The era of big data challenges the way we live and interact with the world. […] Society will need to shed some of its obsession for causality in exchange for simple correlations: not knowing why but only what. This overturns centuries of established practices and challenges our most basic understanding of how to make decisions and comprehend reality[5]. But the reverence for technology and the ability to reach understandings of human beings by capturing huge amounts of behavioural data was adumbrated by Watson a century before big data became a widely used term. Watson’s 1913 lecture at Columbia University was ‘a clear pitch’[6] for the supremacy of behaviourism, and its potential as a revolutionary science.

Prediction and controlnudge

The fundamental point of both behaviourism and adaptive learning is the same. The research practices and the theorizing of American behaviourists until the mid-1950s, writes Mills[7] were driven by the intellectual imperative to create theories that could be used to make socially useful predictions. Predictions are only useful to the extent that they can be used to manipulate behaviour. Watson states this very baldly: the theoretical goal of psychology is the prediction and control of behaviour[8]. Contemporary iterations of behaviourism, such as behavioural economics or nudge theory (see, for example, Thaler & Sunstein’s best-selling ‘Nudge’, Penguin Books, 2008), or the British government’s Behavioural Insights Unit, share the same desire to divert individual activity towards goals (selected by those with power), ‘without either naked coercion or democratic deliberation’[9]. Jose Ferreira of Knewton has an identical approach: We can predict failure in advance, which means we can pre-remediate it in advance. We can say, “Oh, she’ll struggle with this, let’s go find the concept from last year’s materials that will help her not struggle with it.” Like the behaviourists, Ferreira makes grand claims about the social usefulness of his predict-and-control technology: The end is a really simple mission. Only 22% of the world finishes high school, and only 55% finish sixth grade. Those are just appalling numbers. As a species, we’re wasting almost four-fifths of the talent we produce. […] I want to solve the access problem for the human race once and for all.

Ethics

Because they rely on capturing large amounts of personal data, both behaviourism and adaptive learning quickly run into ethical problems. Even where informed consent is used, the subjects must remain partly ignorant of exactly what is being tested, or else there is the fear that they might adjust their behaviour accordingly. The goal is to minimise conscious understanding of what is going on[10]. For adaptive learning, the ethical problem is much greater because of the impossibility of ensuring the security of this data. Everything is hackable.

Marketing

Behaviourism was seen as a god-send by the world of advertising. J. B. Watson, after a front-page scandal about his affair with a student, and losing his job at John Hopkins University, quickly found employment on Madison Avenue. ‘Scientific advertising’, as practised by the Mad Men from the 1920s onwards, was based on behaviourism. The use of data analytics by Google, Amazon, et al is a direct descendant of scientific advertising, so it is richly appropriate that adaptive learning is the child of data analytics.

[1] Hunter, D. and Smith, R. (2012) ‘Unpacking the past: “CLT” through ELTJ keywords’. ELT Journal, 66/4: 430-439.

[2] Kara, N. & Sevim, N. 2013. ‘Adaptive learning systems: beyond teaching machines’, Contemporary Educational Technology, 4(2), 108-120

[3] Mills, J. A. (1998) Control: A History of Behavioral Psychology. New York: New York University Press, p.5

[4] Davies, W. (2015) The Happiness Industry. London: Verso. p.91

[5] Mayer-Schönberger, V. & Cukier, K. (2013) Big Data. London: John Murray, p.7

[6] Davies, W. (2015) The Happiness Industry. London: Verso. p.87

[7] Mills, J. A. (1998) Control: A History of Behavioral Psychology. New York: New York University Press, p.2

[8] Watson, J. B. (1913) ‘Behaviorism as the Psychologist Views it’ Psychological Review 20: 158

[9] Davies, W. (2015) The Happiness Industry. London: Verso. p.88

[10] Davies, W. (2015) The Happiness Industry. London: Verso. p.92

Back in December 2013, in an interview with eltjam , David Liu, COO of the adaptive learning company, Knewton, described how his company’s data analysis could help ELT publishers ‘create more effective learning materials’. He focused on what he calls ‘content efficacy[i]’ (he uses the word ‘efficacy’ five times in the interview), a term which he explains below:

A good example is when we look at the knowledge graph of our partners, which is a map of how concepts relate to other concepts and prerequisites within their product. There may be two or three prerequisites identified in a knowledge graph that a student needs to learn in order to understand a next concept. And when we have hundreds of thousands of students progressing through a course, we begin to understand the efficacy of those said prerequisites, which quite frankly were made by an author or set of authors. In most cases they’re quite good because these authors are actually good in what they do. But in a lot of cases we may find that one of those prerequisites actually is not necessary, and not proven to be useful in achieving true learning or understanding of the current concept that you’re trying to learn. This is interesting information that can be brought back to the publisher as they do revisions, as they actually begin to look at the content as a whole.

One commenter on the post, Tom Ewens, found the idea interesting. It could, potentially, he wrote, give us new insights into how languages are learned much in the same way as how corpora have given us new insights into how language is used. Did Knewton have any plans to disseminate the information publicly, he asked. His question remains unanswered.

At the time, Knewton had just raised $51 million (bringing their total venture capital funding to over $105 million). Now, 16 months later, Knewton have launched their new product, which they are calling Knewton Content Insights. They describe it as the world’s first and only web-based engine to automatically extract statistics comparing the relative quality of content items — enabling us to infer more information about student proficiency and content performance than ever before possible.

The software analyses particular exercises within the learning content (and particular items within them). It measures the relative difficulty of individual items by, for example, analysing how often a question is answered incorrectly and how many tries it takes each student to answer correctly. It also looks at what they call ‘exhaustion’ – how much content students are using in a particular area – and whether they run out of content. The software can correlate difficulty with exhaustion. Lastly, it analyses what they call ‘assessment quality’ – how well  individual questions assess a student’s understanding of a topic.

Knewton’s approach is premised on the idea that learning (in this case language learning) can be broken down into knowledge graphs, in which the information that needs to be learned can be arranged and presented hierarchically. The ‘granular’ concepts are then ‘delivered’ to the learner, and Knewton’s software can optimise the delivery. The first problem, as I explored in a previous post, is that language is a messy, complex system: it doesn’t lend itself terribly well to granularisation. The second problem is that language learning does not proceed in a linear, hierarchical way: it is also messy and complex. The third is that ‘language learning content’ cannot simply be delivered: a process of mediation is unavoidable. Are the people at Knewton unaware of the extensive literature devoted to the differences between synthetic and analytic syllabuses, of the differences between product-oriented and process-oriented approaches? It would seem so.

Knewton’s ‘Content Insights’ can only, at best, provide some sort of insight into the ‘language knowledge’ part of any learning content. It can say nothing about the work that learners do to practise language skills, since these are not susceptible to granularisation: you simply can’t take a piece of material that focuses on reading or listening and analyse its ‘content efficacy at the concept level’. Because of this, I predicted (in the post about Knowledge Graphs) that the likely focus of Knewton’s analytics would be discrete item, sentence-level grammar (typically tenses). It turns out that I was right.

Knewton illustrate their new product with screen shots such as those below.

Content-Insight-Assessment-1

 

 

 

 

 

Content-Insight-Exhaustion-1

 

 

 

 

 

 

 

They give a specific example of the sort of questions their software can answer. It is: do students generally find the present simple tense easier to understand than the present perfect tense? Doh!

It may be the case that Knewton Content Insights might optimise the presentation of this kind of grammar, but optimisation of this presentation and practice is highly unlikely to have any impact on the rate of language acquisition. Students are typically required to study the present perfect at every level from ‘elementary’ upwards. They have to do this, not because the presentation in, say, Headway, is not optimised. What they need is to spend a significantly greater proportion of their time on ‘language use’ and less on ‘language knowledge’. This is not just my personal view: it has been extensively researched, and I am unaware of any dissenting voices.

The number-crunching in Knewton Content Insights is unlikely, therefore, to lead to any actionable insights. It is, however, very likely to lead (as writer colleagues at Pearson and other publishers are finding out) to an obsession with measuring the ‘efficacy’ of material which, quite simply, cannot meaningfully be measured in this way. It is likely to distract from much more pressing issues, notably the question of how we can move further and faster away from peddling sentence-level, discrete-item grammar.

In the long run, it is reasonable to predict that the attempt to optimise the delivery of language knowledge will come to be seen as an attempt to tackle the wrong question. It will make no significant difference to language learners and language learning. In the short term, how much time and money will be wasted?

[i] ‘Efficacy’ is the buzzword around which Pearson has built its materials creation strategy, a strategy which was launched around the same time as this interview. Pearson is a major investor in Knewton.

‘Sticky’ – as in ‘sticky learning’ or ‘sticky content’ (as opposed to ‘sticky fingers’ or a ‘sticky problem’) – is itself fast becoming a sticky word. If you check out ‘sticky learning’ on Google Trends, you’ll see that it suddenly spiked in September 2011, following the slightly earlier appearance of ‘sticky content’. The historical rise in this use of the word coincides with the exponential growth in the number of references to ‘big data’.

I am often asked if adaptive learning really will take off as a big thing in language learning. Will adaptivity itself be a sticky idea? When the question is asked, people mean the big data variety of adaptive learning, rather than the much more limited adaptivity of spaced repetition algorithms, which, I think, is firmly here and here to stay. I can’t answer the question with any confidence, but I recently came across a book which suggests a useful way of approaching the question.

41u+NEyWjnL._SY344_BO1,204,203,200_‘From the Ivory Tower to the Schoolhouse’ by Jack Schneider (Harvard Education Press, 2014) investigates the reasons why promising ideas from education research fail to get taken up by practitioners, and why other, less-than-promising ideas, from a research or theoretical perspective, become sticky quite quickly. As an example of the former, Schneider considers Robert Sternberg’s ‘Triarchic Theory’. As an example of the latter, he devotes a chapter to Howard Gardner’s ‘Multiple Intelligences Theory’.

Schneider argues that educational ideas need to possess four key attributes in order for teachers to sit up, take notice and adopt them.

  1. perceived significance: the idea must answer a question central to the profession – offering a big-picture understanding rather than merely one small piece of a larger puzzle
  2. philosophical compatibility: the idea must clearly jibe with closely held [teacher] beliefs like the idea that teachers are professionals, or that all children can learn
  3. occupational realism: it must be possible for the idea to be put easily into immediate use
  4. transportability: the idea needs to find its practical expression in a form that teachers can access and use at the time that they need it – it needs to have a simple core that can travel through pre-service coursework, professional development seminars, independent study and peer networks

To what extent does big data adaptive learning possess these attributes? It certainly comes up trumps with respect to perceived significance. The big question that it attempts to answer is the question of how we can make language learning personalized / differentiated / individualised. As its advocates never cease to remind us, adaptive learning holds out the promise of moving away from a one-size-fits-all approach. The extent to which it can keep this promise is another matter, of course. For it to do so, it will never be enough just to offer different pathways through a digitalised coursebook (or its equivalent). Much, much more content will be needed: at least five or six times the content of a one-size-fits-all coursebook. At the moment, there is little evidence of the necessary investment into content being made (quite the opposite, in fact), but the idea remains powerful nevertheless.

When it comes to philosophical compatibility, adaptive learning begins to run into difficulties. Despite the decades of edging towards more communicative approaches in language teaching, research (e.g. the research into English teaching in Turkey described in a previous post), suggests that teachers still see explanation and explication as key functions of their jobs. They believe that they know their students best and they know what is best for them. Big data adaptive learning challenges these beliefs head on. It is no doubt for this reason that companies like Knewton make such a point of claiming that their technology is there to help teachers. But Jose Ferreira doth protest too much, methinks. Platform-delivered adaptive learning is a direct threat to teachers’ professionalism, their salaries and their jobs.

Occupational realism is more problematic still. Very, very few language teachers around the world have any experience of truly blended learning, and it’s very difficult to envisage precisely what it is that the teacher should be doing in a classroom. Publishers moving towards larger-scale blended adaptive materials know that this is a big problem, and are actively looking at ways of packaging teacher training / teacher development (with a specific focus on blended contexts) into the learner-facing materials that they sell. But the problem won’t go away. Education ministries have a long history of throwing money at technological ‘solutions’ without thinking about obtaining the necessary buy-in from their employees. It is safe to predict that this is something that is unlikely to change. Moreover, learning how to become a blended teacher is much harder than learning, say, how to make good use of an interactive whiteboard. Since there are as many different blended adaptive approaches as there are different educational contexts, there cannot be (irony of ironies) a one-size-fits-all approach to training teachers to make good use of this software.

Finally, how transportable is big data adaptive learning? Not very, is the short answer, and for the same reasons that ‘occupational realism’ is highly problematic.

Looking at things through Jack Schneider’s lens, we might be tempted to come to the conclusion that the future for adaptive learning is a rocky path, at best. But Schneider doesn’t take political or economic considerations into account. Sternberg’s ‘Triarchic Theory’ never had the OECD or the Gates Foundation backing it up. It never had millions and millions of dollars of investment behind it. As we know from political elections (and the big data adaptive learning issue is a profoundly political one), big bucks can buy opinions.

It may also prove to be the case that the opinions of teachers don’t actually matter much. If the big adaptive bucks can win the educational debate at the highest policy-making levels, teachers will be the first victims of the ‘creative disruption’ that adaptivity promises. If you don’t believe me, just look at what is going on in the U.S.

There are causes for concern, but I don’t want to sound too alarmist. Nobody really has a clue whether big data adaptivity will actually work in language learning terms. It remains more of a theory than a research-endorsed practice. And to end on a positive note, regardless of how sticky it proves to be, it might just provide the shot-in-the-arm realisation that language teachers, at their best, are a lot more than competent explainers of grammar or deliverers of gap-fills.

It’s a good time to be in Turkey if you have digital ELT products to sell. Not so good if you happen to be an English language learner. This post takes a look at both sides of the Turkish lira.

OUP, probably the most significant of the big ELT publishers in Turkey, recorded ‘an outstanding performance’ in the country in the last financial year, making it their 5th largest ELT market. OUP’s annual report for 2013 – 2014 describes the particularly strong demand for digital products and services, a demand which is now influencing OUP’s global strategy for digital resources. When asked about the future of ELT, Peter Marshall , Managing Director of OUP’s ELT Division, suggested that Turkey was a country that could point us in the direction of an answer to the question. Marshall and OUP will be hoping that OUP’s recently launched Digital Learning Platform (DLP) ‘for the global distribution of adult and secondary ELT materials’ will be an important part of that future, in Turkey and elsewhere. I can’t think of any good reason for doubting their belief.

tbl-ipad1OUP aren’t the only ones eagerly checking the pound-lira exchange rates. For the last year, CUP also reported ‘significant sales successes’ in Turkey in their annual report . For CUP, too, it was a year in which digital development has been ‘a top priority’. CUP’s Turkish success story has been primarily driven by a deal with Anadolu University (more about this below) to provide ‘a print and online solution to train 1.7 million students’ using their Touchstone course. This was the biggest single sale in CUP’s history and has inspired publishers, both within CUP and outside, to attempt to emulate the deal. The new blended products will, of course, be adaptive.

Just how big is the Turkish digital ELT pie? According to a 2014 report from Ambient Insight , revenues from digital ELT products reached $32.0 million in 2013. They are forecast to more than double to $72.6 million in 2018. This is a growth rate of 17.8%, a rate which is practically unbeatable in any large economy, and Turkey is the 17th largest economy in the world, according to World Bank statistics .

So, what makes Turkey special?

  • Turkey has a large and young population that is growing by about 1.4% each year, which is equivalent to approximately 1 million people. According to the Turkish Ministry of Education, there are currently about 5.5 million students enrolled in upper-secondary schools. Significant growth in numbers is certain.
  • Turkey is currently in the middle of a government-sponsored $990 million project to increase the level of English proficiency in schools. The government’s target is to position the country as one of the top ten global economies by 2023, the centenary of the Turkish Republic, and it believes that this position will be more reachable if it has a population with the requisite foreign language (i.e. English) skills. As part of this project, the government has begun to introduce English in the 1st grade (previously it was in the 4th grade).
  • The level of English in Turkey is famously low and has been described as a ‘national weakness’. In October/November 2011, the Turkish research institute SETA and the Turkish Ministry for Youth and Sports conducted a large survey across Turkey of 10,174 young citizens, aged 15 to 29. The result was sobering: 59 per cent of the young people said they “did not know any foreign language.” A recent British Council report (2013) found the competence level in English of most (90+%) students across Turkey was evidenced as rudimentary – even after 1000+ hours (estimated at end of Grade 12) of English classes. This is, of course, good news for vendors of English language learning / teaching materials.
  • Turkey has launched one of the world’s largest educational technology projects: the FATIH Project (The Movement to Enhance Opportunities and Improve Technology). One of its objectives is to provide tablets for every student between grades 5 and 12. At the same time, according to the Ambient report , the intention is to ‘replace all print-based textbooks with digital content (both eTextbooks and online courses).’
  • Purchasing power in Turkey is concentrated in a relatively small number of hands, with the government as the most important player. Institutions are often very large. Anadolu University, for example, is the second largest university in the world, with over 2 million students, most of whom are studying in virtual classrooms. There are two important consequences of this. Firstly, it makes scalable, big-data-driven LMS-delivered courses with adaptive software a more attractive proposition to purchasers. Secondly, it facilitates the B2B sales model that is now preferred by vendors (including the big ELT publishers).
  • Turkey also has a ‘burgeoning private education sector’, according to Peter Marshall, and a thriving English language school industry. According to Ambient ‘commercial English language learning in Turkey is a $400 million industry with over 600 private schools across the country’. Many of these are grouped into large chains (see the bullet point above).
  • Turkey is also ‘in the vanguard of the adoption of educational technology in ELT’, according to Peter Marshall. With 36 million internet users, the 5th largest internet population in Europe, and the 3rd highest online engagement in Europe, measured by time spent online, (reported by Sina Afra ), the country’s enthusiasm for educational technology is not surprising. Ambient reports that ‘the growth rate for mobile English educational apps is 27.3%’. This enthusiasm is reflected in Turkey’s thriving ELT conference scene. The most popular conference themes and conference presentations are concerned with edtech. A keynote speech by Esat Uğurlu at the ISTEK schools 3rd international ELT conference at Yeditepe in April 2013 gives a flavour of the current interests. The talk was entitled ‘E-Learning: There is nothing to be afraid of and plenty to discover’.

All of the above makes Turkey a good place to be if you’re selling digital ELT products, even though the competition is pretty fierce. If your product isn’t adaptive, personalized and gamified, you may as well not bother.

What impact will all this have on Turkey’s English language learners? A report co-produced by TEPAV (the Economic Policy Research Foundation of Turkey) and the British Council in November 2013 suggests some of the answers, at least in the school population. The report  is entitled ‘Turkey National Needs Assessment of State School English Language Teaching’ and its Executive Summary is brutally frank in its analysis of the low achievements in English language learning in the country. It states:

The teaching of English as a subject and not a language of communication was observed in all schools visited. This grammar-based approach was identified as the first of five main factors that, in the opinion of this report, lead to the failure of Turkish students to speak/ understand English on graduation from High School, despite having received an estimated 1000+ hours of classroom instruction.

In all classes observed, students fail to learn how to communicate and function independently in English. Instead, the present teacher-centric, classroom practice focuses on students learning how to answer teachers’ questions (where there is only one, textbook-type ‘right’ answer), how to complete written exercises in a textbook, and how to pass a grammar-based test. Thus grammar-based exams/grammar tests (with right/wrong answers) drive the teaching and learning process from Grade 4 onwards. This type of classroom practice dominates all English lessons and is presented as the second causal factor with respect to the failure of Turkish students to speak/understand English.

The problem, in other words, is the curriculum and the teaching. In its recommendations, the report makes this crystal clear. Priority needs to be given to developing a revised curriculum and ‘a comprehensive and sustainable system of in-service teacher training for English teachers’. Curriculum renewal and programmes of teacher training / development are the necessary prerequisites for the successful implementation of a programme of educational digitalization. Unfortunately, research has shown again and again that these take a long time and outcomes are difficult to predict in advance.

By going for digitalization first, Turkey is taking a huge risk. What LMSs, adaptive software and most apps do best is the teaching of language knowledge (grammar and vocabulary), not the provision of opportunities for communicative practice (for which there is currently no shortage of opportunity … it is just that these opportunities are not being taken). There is a real danger, therefore, that the technology will push learning priorities in precisely the opposite direction to that which is needed. Without significant investments in curriculum reform and teacher training, how likely is it that the transmission-oriented culture of English language teaching and learning will change?

Even if the money for curriculum reform and teacher training were found, it is also highly unlikely that effective country-wide approaches to blended learning for English would develop before the current generation of tablets and their accompanying content become obsolete.

Sadly, the probability is, once more, that educational technology will be a problem-changer, even a problem-magnifier, rather than a problem-solver. I’d love to be wrong.