Posts Tagged ‘dictionaries’

I’m a sucker for meta-analyses, those aggregates of multiple studies that generate an effect size, and I am even fonder of meta-meta analyses. I skip over the boring stuff about inclusion criteria and statistical procedures and zoom in on the results and discussion. I’ve pored over Hattie (2009) and, more recently, Dunlosky et al (2013), and quoted both more often than is probably healthy. Hardly surprising, then, that I was eager to read Luke Plonsky and Nicole Ziegler’s ‘The CALL–SLA interface: insights from a second-order synthesis’ (Plonsky & Ziegler, 2016), an analysis of nearly 30 meta-analyses (later whittled down to 14) looking at the impact of technology on L2 learning. The big question they were looking to find an answer to? How effective is computer-assisted language learning compared to face-to-face contexts?

Plonsky & Ziegler

Plonsky and Ziegler found that there are unequivocally ‘positive effects of technology on language learning’. In itself, this doesn’t really tell us anything, simply because there are too many variables. It’s a statistical soundbite, ripe for plucking by anyone with an edtech product to sell. Much more useful is to understand which technologies used in which ways are likely to have a positive effect on learning. It appears from Plonsky and Ziegler’s work that the use of CALL glosses (to develop reading comprehension and vocabulary development) provides the strongest evidence of technology’s positive impact on learning. The finding is reinforced by the fact that this particular technology was the most well-represented research area in the meta-analyses under review.

What we know about glosses

gloss_gloss_WordA gloss is ‘a brief definition or synonym, either in L1 or L2, which is provided with [a] text’ (Nation, 2013: 238). They can take many forms (e.g. annotations in the margin or at the foot a printed page), but electronic or CALL glossing is ‘an instant look-up capability – dictionary or linked’ (Taylor, 2006; 2009) which is becoming increasingly standard in on-screen reading. One of the most widely used is probably the translation function in Microsoft Word: here’s the French gloss for the word ‘gloss’.

Language learning tools and programs are making increasing use of glosses. Here are two examples. The first is Lingro , a dictionary tool that learners can have running alongside any webpage: clicking on a word brings up a dictionary entry, and the word can then be exported into a wordlist which can be practised with spaced repetition software. The example here is using the English-English dictionary, but a number of bilingual pairings are available. The second is from Bliu Bliu , a language learning app that I unkindly reviewed here .Lingro_example

Bliu_Bliu_example_2

So, what did Plonsky and Ziegler discover about glosses? There were two key takeways:

  • both L1 and L2 CALL glossing can be beneficial to learners’ vocabulary development (Taylor, 2006, 2009, 2013)
  • CALL / electronic glosses lead to more learning gains than paper-based glosses (p.22)

On the surface, this might seem uncontroversial, but if you took a good look at the three examples (above) of online glosses, you’ll be thinking that something is not quite right here. Lingro’s gloss is a fairly full dictionary entry: it contains too much information for the purpose of a gloss. Cognitive Load Theory suggests that ‘new information be provided concisely so as not to overwhelm the learner’ (Khezrlou et al, 2017: 106): working out which definition is relevant here (the appropriate definition is actually the sixth in this list) will overwhelm many learners and interfere with the process of reading … which the gloss is intended to facilitate. In addition, the language of the definitions is more difficult than the defined item. Cognitive load is, therefore, further increased. Lingro needs to use a decent learner’s dictionary (with a limited defining vocabulary), rather than relying on the free Wiktionary.

Nation (2013: 240) cites research which suggests that a gloss is most effective when it provides a ‘core meaning’ which users will have to adapt to what is in the text. This is relatively unproblematic, from a technological perspective, but few glossing tools actually do this. The alternative is to use NLP tools to identify the context-specific meaning: our ability to do this is improving all the time but remains some way short of total accuracy. At the very least, NLP tools are needed to identify part of speech (which will increase the probability of hitting the right meaning). Bliu Bliu gets things completely wrong, confusing the verb and the adjective ‘own’.

Both Lingro and Bliu Bliu fail to meet the first requirement of a gloss: ‘that it should be understood’ (Nation, 2013: 239). Neither is likely to contribute much to the vocabulary development of learners. We will need to modify Plonsky and Ziegler’s conclusions somewhat: they are contingent on the quality of the glosses. This is not, however, something that can be assumed …. as will be clear from even the most cursory look at the language learning tools that are available.

Nation (2013: 447) also cites research that ‘learning is generally better if the meaning is written in the learner’s first language. This is probably because the meaning can be easily understood and the first language meaning already has many rich associations for the learner. Laufer and Shmueli (1997) found that L1 glosses are superior to L2 glosses in both short-term and long-term (five weeks) retention and irrespective of whether the words are learned in lists, sentences or texts’. Not everyone agrees, and a firm conclusion either way is probably not possible: learner variables (especially learner preferences) preclude anything conclusive, which is why I’ve highlighted Nation’s use of the word ‘generally’. If we have a look at Lingro’s bilingual gloss, I think you’ll agree that the monolingual and bilingual glosses are equally unhelpful, equally unlikely to lead to better learning, whether it’s vocabulary acquisition or reading comprehension.bilingual lingro

 

The issues I’ve just discussed illustrate the complexity of the ‘glossing’ question, but they only scratch the surface. I’ll dig a little deeper.

1 Glosses are only likely to be of value to learning if they are used selectively. Nation (2013: 242) suggests that ‘it is best to assume that the highest density of glossing should be no more than 5% and preferably around 3% of the running words’. Online glosses make the process of look-up extremely easy. This is an obvious advantage over look-ups in a paper dictionary, but there is a real risk, too, that the ease of online look-up encourages unnecessary look-ups. More clicks do not always lead to more learning. The value of glosses cannot therefore be considered independently of a consideration of the level (i.e. appropriacy) of the text that they are being used with.

2 A further advantage of online glosses is that they can offer a wide range of information, e.g. pronunciation, L1 translation, L2 definition, visuals, example sentences. The review of literature by Khezrlou et al (2017: 107) suggests that ‘multimedia glosses can promote vocabulary learning but uncertainty remains as to whether they also facilitate reading comprehension’. Barcroft (2015), however, warns that pictures may help learners with meaning, but at the cost of retention of word form, and the research of Boers et al did not find evidence to support the use of pictures. Even if we were to accept the proposition that pictures might be helpful, we would need to hold two caveats. First, the amount of multimodal support should not lead to cognitive overload. Second, pictures need to be clear and appropriate: a condition that is rarely met in online learning programs. The quality of multimodal glosses is more important than their inclusion / exclusion.

3 It’s a commonplace to state that learners will learn more if they are actively engaged or involved in the learning, rather than simply (receptively) looking up a gloss. So, it has been suggested that cognitive engagement can be stimulated by turning the glosses into a multiple-choice task, and a fair amount of research has investigated this possibility. Barcroft (2015: 143) reports research that suggests that ‘multiple-choice glosses [are] more effective than single glosses’, but Nation (2013: 246) argues that ‘multiple choice glosses are not strongly supported by research’. Basically, we don’t know and even if we have replication studies to re-assess the benefits of multimodal glosses (as advocated by Boers et al, 2017), it is again likely that learner variables will make it impossible to reach a firm conclusion.

Learning from meta-analyses

Discussion of glosses is not new. Back in the late 19th century, ‘most of the Reform Movement teachers, took the view that glossing was a sensible technique’ (Howatt, 2004: 191). Sensible, but probably not all that important in the broader scheme of language learning and teaching. Online glosses offer a number of potential advantages, but there is a huge number of variables that need to be considered if the potential is to be realised. In essence, I have been arguing that asking whether online glosses are more effective than print glosses is the wrong question. It’s not a question that can provide us with a useful answer. When you look at the details of the research that has been brought together in the meta-analysis, you simply cannot conclude that there are unequivocally positive effects of technology on language learning, if the most positive effects are to be found in the digital variation of an old sensible technique.

Interesting and useful as Plonsky and Ziegler’s study is, I think it needs to be treated with caution. More generally, we need to be cautious about using meta-analyses and effect sizes. Mura Nava has a useful summary of an article by Adrian Simpson (Simpson, 2017), that looks at inclusion criteria and statistical procedures and warns us that we cannot necessarily assume that the findings of meta-meta-analyses are educationally significant. More directly related to technology and language learning, Boulton’s paper (Boulton, 2016) makes a similar point: ‘Meta-analyses need interpreting with caution: in particular, it is tempting to seize on a single figure as the ultimate answer to the question: Does it work? […] More realistically, we need to look at variation in what works’.

For me, the greatest value in Plonsky and Ziegler’s paper was nothing to do with effect sizes and big answers to big questions. It was the bibliography … and the way it forced me to be rather more critical about meta-analyses.

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Boers, F., Warren, P., He, L. & Deconinck, J. 2017. ‘Does adding pictures to glosses enhance vocabulary uptake from reading?’ System 66: 113 – 129

Boulton, A. 2016. ‘Quantifying CALL: significance, effect size and variation’ in S. Papadima-Sophocleus, L. Bradley & S. Thouësny (eds.) CALL Communities and Culture – short papers from Eurocall 2016 pp.55 – 60 http://files.eric.ed.gov/fulltext/ED572012.pdf

Dunlosky, J., Rawson, K.A., Marsh, E.J., Nathan, M.J. & Willingham, D.T. 2013. ‘Improving Students’ Learning With Effective Learning Techniques’ Psychological Science in the Public Interest 14 / 1: 4 – 58

Hattie, J.A.C. 2009. Visible Learning. Abingdon, Oxon.: Routledge

Howatt, A.P.R. 2004. A History of English Language Teaching 2nd edition. Oxford: Oxford University Press

Khezrlou, S., Ellis, R. & K. Sadeghi 2017. ‘Effects of computer-assisted glosses on EFL learners’ vocabulary acquisition and reading comprehension in three learning conditions’ System 65: 104 – 116

Laufer, B. & Shmueli, K. 1997. ‘Memorizing new words: Does teaching have anything to do with it?’ RELC Journal 28 / 1: 89 – 108

Nation, I.S.P. 2013. Learning Vocabulary in Another Language. Cambridge: Cambridge University Press

Plonsky, L. & Ziegler, N. 2016. ‘The CALL–SLA interface:  insights from a second-order synthesis’ Language Learning & Technology 20 / 2: 17 – 37

Simpson, A. 2017. ‘The misdirection of public policy: Comparing and combining standardised effect sizes’ Journal of Education Policy, 32 / 4: 450-466

Taylor, A. M. 2006. ‘The effects of CALL versus traditional L1 glosses on L2 reading comprehension’. CALICO Journal, 23, 309–318.

Taylor, A. M. 2009. ‘CALL-based versus paper-based glosses: Is there a difference in reading comprehension?’ CALICO Journal, 23, 147–160.

Taylor, A. M. 2013. CALL versus paper: In which context are L1 glosses more effective? CALICO Journal, 30, 63-8

It’s practically impossible to keep up to date with all the new language learning tools that appear, even with the help of curated lists like Nik Peachey’s Scoop.it! (which is one of the most useful I know of). The trouble with such lists is that they are invariably positive, but when you actually find the time to look at the product, you often wish you hadn’t. I decided to save time for people like me by occasionally writing short posts about things that you can safely forget about. This is the first.

Nik’s take on Vocabulist was this:

Nik_Peachey

It sounds useful,  but for anyone involved in language teaching or learning, there is, unfortunately, nothing remotely useful about this tool.

Here’s how it works:

Vocabulist is super easy to use!

Here’s how:

1.Upload a Word, PDF, or Text document. You could also copy and paste text.

2.Wait a minute. Feel free to check Facebook while Vocabulist does some thinking.

3.Select the words that you want, confirm spelling, and confirm the correct definition.

4.All Done! Now print it, export it, and study it.

To try it out, I copied and pasted the text above. This is what you get for the first two lines:

vocabulist

The definitions are taken from Merriam-Webster. You scroll down until you find the definition for the best fit, and you can then save the list as a pdf or export it to Quizlet.

export

For language learners, there are far too many definitions to choose from. For ‘super’, for example, there are 24 definitions and, because they are from Merriam-Webster, they are all harder than the word being defined.

The idea behind Vocabulist could be adapted for language learners if there was a selection of dictionary resources that users could choose from (a selection of good bilingual or semi-bilingual dictionaries and a good monolingual learner’s dictionary). But, as it stands, here’s an app you can forget.

FluentU, busuu, Bliu Bliu … what is it with all the ‘u’s? Hong-Kong based FluentU used to be called FluentFlix, but they changed their name a while back. The service for English learners is relatively new. Before that, they focused on Chinese, where the competition is much less fierce.

At the core of FluentU is a collection of short YouTube videos, which are sorted into 6 levels and grouped into 7 topic categories. The videos are accompanied by transcriptions. As learners watch a video, they can click on any word in the transcript. This will temporarily freeze the video and show a pop-up which offers a definition of the word, information about part of speech, a couple of examples of this word in other sentences, and more example sentences of the word from other videos that are linked on FluentU. These can, in turn, be clicked on to bring up a video collage of these sentences. Learners can click on an ‘Add to Vocab’ button, which will add the word to personalised vocabulary lists. These are later studied through spaced repetition.

FluentU describes its approach in the following terms: FluentU selects the best authentic video content from the web, and provides the scaffolding and support necessary to bring that authentic content within reach for your students. It seems appropriate, therefore, to look first at the nature of that content. At the moment, there appear to be just under 1,000 clips which are allocated to levels as follows:

Newbie 123 Intermediate 294 Advanced 111
Elementary 138 Upper Int 274 Native 40

It has to be assumed that the amount of content will continue to grow, but, for the time being, it’s not unreasonable to say that there isn’t a lot there. I looked at the Upper Intermediate level where the shortest was 32 seconds long, the longest 4 minutes 34 seconds, but most were between 1 and 2 minutes. That means that there is the equivalent of about 400 minutes (say, 7 hours) for this level.

The actual amount that anyone would want to watch / study can be seen to be significantly less when the topics are considered. These break down as follows:

Arts & entertainment 105 Everyday life 60 Science & tech 17
Business 34 Health & lifestyle 28
Culture 29 Politics & society 6

The screenshots below give an idea of the videos on offer:

menu1menu2

I may be a little difficult, but there wasn’t much here that appealed. Forget the movie trailers for crap movies, for a start. Forget the low level business stuff, too. ‘The History of New Year’s Resolutions’ looked promising, but turned out to be a Wikipedia style piece. FluentU certainly doesn’t have the eye for interesting, original video content of someone like Jamie Keddie or Kieran Donaghy.

But, perhaps, the underwhelming content is of less importance than what you do with it. After all, if you’re really interested in content, you can just go to YouTube and struggle through the transcriptions on your own. The transcripts can be downloaded as pdfs, which, strangely are marked with a FluentU copyright notice.copyright FluentU doesn’t need to own the copyright of the videos, because they just provide links, but claiming copyright for someone else’s script seemed questionable to me. Anyway, the only real reason to be on this site is to learn some vocabulary. How well does it perform?

fluentu1

Level is self-selected. It wasn’t entirely clear how videos had been allocated to level, but I didn’t find any major discrepancies between FluentU’s allocation and my own, intuitive grading of the content. Clicking on words in the transcript, the look-up / dictionary function wasn’t too bad, compared to some competing products I have looked at. The system could deal with some chunks and phrases (e.g. at your service, figure out) and the definitions were appropriate to the way these had been used in context. The accuracy was far from consistent, though. Some definitions were harder than the word they were explaining (e.g. telephone = an instrument used to call someone) and some were plain silly (e.g. the definition of I is me).

have_been_definitionSome chunks were not recognised, so definitions were amusingly wonky. Come out, get through and have been were all wrong. For the phrase talk her into it, the program didn’t recognise the phrasal verb, and offered me communicate using speech for talk, and to the condition, state or form of for into.

For many words, there are pictures to help you with the meaning, but you wonder about some of them, e.g. the picture of someone clutching a suitcase to illustrate the meaning of of, or a woman holding up a finger and thumb to illustrate the meaning of what (as a pronoun).what_definition

The example sentences don’t seem to be graded in any way and are not always useful. The example sentences for of, for example, are The pages of the book are ripped, the lemurs of Madagascar and what time of day are you free. Since the definition is given as belonging to, there seems to be a problem with, at least, the last of these examples!

With the example sentence that link you to other video examples of this word being used, I found that it took a long time to load … and it really wasn’t worth waiting for.

After a catalogue of problems like this, you might wonder how I can say that this function wasn’t too bad, but I’ve seen a lot worse. It was, at least, mostly accurate.

Moving away from the ‘Watch’ options, I explored the ‘Learn’ section. Bearing in mind that I had described myself as ‘Upper Intermediate’, I was surprised to be offered the following words for study: Good morning, may, help, think, so. This then took me to the following screen:great job

I was getting increasingly confused. After watching another video, I could practise some of the words I had highlighted, but, again, I wasn’t sure quite what was going on. There was a task that asked me to ‘pick the correct translation’, but this was, in fact a multiple choice dictation task.translation task

Next, I was asked to study the meaning of the word in, followed by an unhelpful gap-fill task:gap fill

Confused? I was. I decided to look for something a little more straightforward, and clicked on a menu of vocabulary flash cards that I could import. These included sets based on copyright material from both CUP and OUP, and I wondered what these publishers might think of their property being used in this way.flashcards

FluentU claims  that it is based on the following principles:

  1. Individualized scaffolding: FluentU makes language learning easy by teaching new words with vocabulary students already know.
  2. Mastery Learning: FluentU sets students up for success by making sure they master the basics before moving on to more advanced topics.
  3. Gamification: FluentU incorporates the latest game design mechanics to make learning fun and engaging.
  4. Personalization: Each student’s FluentU experience is unlike anyone else’s. Video clips, examples, and quizzes are picked to match their vocabulary and interests.

The ‘individualized scaffolding’ is no more than common sense, dressed up in sciency-sounding language. The reference to ‘Mastery Learning’ is opaque, to say the least, with some confusion between language features and topic. The gamification is rudimentary, and the personalization is pretty limited. It doesn’t come cheap, either.

price table

Lingua.ly is an Israeli start-up which, in its own words, ‘is an innovative new learning solution that helps you learn a language from the open web’. Its platform ‘uses big-data paired with spaced repetition to help users bootstrap their way to fluency’. You can read more of this kind of adspeak at the Lingua.ly blog  or the Wikipedia entry  which seems to have been written by someone from the company.

How does it work? First of all, state the language you want to study (currently there are 10 available) and the language you already speak (currently there are 18 available). Then, there are three possible starting points: insert a word which you want to study, click on a word in any web text or click on a word in one of the suggested reading texts. This then brings up a bilingual dictionary entry which, depending on the word, will offer a number of parts of speech and a number of translated word senses. Click on the appropriate part of speech and the appropriate word sense, and the item will be added to your personal word list. Once you have a handful of words in your word list, you can begin practising these words. Here there are two options. The first is a spaced repetition flashcard system. It presents the target word and 8 different translations in your own language, and you have to click on the correct option. Like most flashcard apps, spaced repetition software determines when and how often you will be re-presented with the item.

The second option is to read an authentic web text which contains one or more of your target items. The company calls this ‘digital language immersion, a method of employing a virtual learning environment to simulate the language learning environment’. The app ‘relies on a number of applied linguistics principles, including the Natural Approach and Krashen’s Input Hypothesis’, according to the Wikipedia entry. Apparently, the more you use the app, the more it knows about you as a learner, and the better able it is to select texts that are appropriate for you. As you read these texts, of course, you can click on more words and add them to your word list.

I tried out Lingua.ly, logging on as a French speaker wanting to learn English, and clicking on words as the fancy took me. I soon had a selection of texts to read. Users are offered a topic menu which consisted of the following: arts, business, education, entertainment, food, weird, beginners, green, health, living, news, politics, psychology, religion, science, sports, style. The sources are varied and not at all bad – Christian Science Monitor, The Grauniad, Huffington Post, Time, for example –and there are many very recent articles. Some texts were interesting; others seemed very niche. I began clicking on more words that I thought would be interesting to explore and here my problems began.

I quickly discovered that the system could only deal with single words, so phrasal verbs were off limits. One text I looked at had the phrasal verb ‘ripping off’, and although I could get translations for ‘ripping’ and ‘off’, this was obviously not terribly helpful. Learners who don’t know the phrasal verb ‘ripped off’ do not necessarily know that it is a phrasal verb, so the translations offered for the two parts of the verb are worse than unhelpful; they are actually misleading. Proper nouns were also a problem, although some of the more common ones were recognised. But the system failed to recognise many proper nouns for what they were, and offered me translations of homonymous nouns. new_word_added_'ripping_off' With some words (e.g. ‘stablemate’), the dictionary offered only one translation (in this case, the literal translation), but not the translation (the much more common idiomatic one) that was needed in the context in which I came across the word. With others (e.g. ‘pertain’), I was offered a list of translations which included the one that was appropriate in the context, but, unfortunately, this is the French word ‘porter’, which has so many possible meanings that, if you genuinely didn’t know the word, you would be none the wiser.

Once you’ve clicked on an appropriate part of speech and translation (if you can find one), the dictionary look-up function offers both photos and example sentences. Here again there were problems. I’d clicked on the verb ‘pan’ which I’d encountered in the context of a critic panning a book they’d read. I was able to select an appropriate translation, but when I got to the photos, I was offered only multiple pictures of frying pans. There were no example sentences for my meaning of ‘pan’: instead, I was offered multiple sentences about cooking pans, and one about Peter Pan. In other cases, the example sentences were either unhelpful (e.g. the example for ‘deal’ was ‘I deal with that’) or bizarre (e.g. the example sentence for ‘deemed’ was ‘The boy deemed that he cheated in the examination’). For some words, there were no example sentences at all.

Primed in this way, I was intrigued to see how the system would deal with the phrase ‘heaving bosoms’ which came up in one text. ‘Heaving bosoms’ is an interesting case. It’s a strong collocation, and, statistically, ‘heaving bosoms’ plural are much more frequent than ‘a heaving bosom’ singular. ‘Heaving’, as an adjective, only really collocates with ‘bosoms’. You don’t find ‘heaving’ collocating with any of the synonyms for ‘bosoms’. The phrase is also heavily connoted, strongly associated with romance novels, and often used with humorous intent. Finally, there is also a problem of usage with ‘bosom’ / ‘bosoms’: men or women, one or two – all in all, it’s a tricky word.

Lingua.ly was no help at all. There was no dictionary entry for an adjectival ‘heaving’, and the translations for the verb ‘heave’ were amusing, but less than appropriate. As for ‘bosom’, there were appropriate translations (‘sein’ and ‘poitrine’), but absolutely no help with how the word is actually used. Example sentences, which are clearly not tagged to the translation which has been chosen, included ‘Or whether he shall die in the bosom of his family or neglected and despised in a foreign land’ and ‘Can a man take fire in his bosom, and his clothes not be burned?’

Lingua.ly has a number of problems. First off, its software hinges on a dictionary (it’s a Babylon dictionary) which can only deal with single words, is incomplete, and does not deal with collocation, connotation, style or register. As such, it can only be of limited value for receptive use, and of no value whatsoever for productive use. Secondly, the web corpus that it is using simply isn’t big enough. Thirdly, it doesn’t seem to have any Natural Language Processing tool which could enable it to deal with meanings in context. It can’t disambiguate words automatically. Such software does now exist, and Lingua.ly desperately needs it.

Unfortunately, there are other problems, too. The flashcard practice is very repetitive and soon becomes boring. With eight translations to choose from, you have to scroll down the page to see them all. But there’s a timer mechanism, and I frequently timed out before being able to select the correct translation (partly because words are presented with no context, so you have to remember the meaning which you clicked in an earlier study session). The texts do not seem to be graded for level. There is no indication of word frequency or word sense frequency. There is just one gamification element (a score card), but there is no indication of how scores are achieved. Last, but certainly not least, the system is buggy. My word list disappeared into the cloud earlier today, and has not been seen since.

I think it’s a pity that Lingua.ly is not better. The idea behind it is good – even if the references to Krashen are a little unfortunate. The company says that they have raised $800,000 in funding, but with their freemium model they’ll be desperately needing more, and they’ve gone to market too soon. One reviewer, Language Surfer,  wrote a withering review of Lingua.ly’s Arabic program (‘it will do more harm than good to the Arabic student’), and Brendan Wightman, commenting at eltjam,  called it ‘dull as dish water, […] still very crude, limited and replete with multiple flaws’. But, at least, it’s free.