Posts Tagged ‘Pearson’

by Philip Kerr & Andrew Wickham

from IATEFL 2016 Birmingham Conference Selections (ed. Tania Pattison) Faversham, Kent: IATEFL pp. 75 – 78

ELT publishing, international language testing and private language schools are all industries: products are produced, bought and sold for profit. English language teaching (ELT) is not. It is an umbrella term that is used to describe a range of activities, some of which are industries, and some of which (such as English teaching in high schools around the world) might better be described as public services. ELT, like education more generally, is, nevertheless, often referred to as an ‘industry’.

Education in a neoliberal world

The framing of ELT as an industry is both a reflection of how we understand the term and a force that shapes our understanding. Associated with the idea of ‘industry’ is a constellation of other ideas and words (such as efficacy, productivity, privatization, marketization, consumerization, digitalization and globalization) which become a part of ELT once it is framed as an industry. Repeated often enough, ‘ELT as an industry’ can become a metaphor that we think and live by. Those activities that fall under the ELT umbrella, but which are not industries, become associated with the desirability of industrial practices through such discourse.

The shift from education, seen as a public service, to educational managerialism (where education is seen in industrial terms with a focus on efficiency, free market competition, privatization and a view of students as customers) can be traced to the 1980s and 1990s (Gewirtz, 2001). In 1999, under pressure from developed economies, the General Agreement on Trade in Services (GATS) transformed education into a commodity that could be traded like any other in the marketplace (Robertson, 2006). The global industrialisation and privatization of education continues to be promoted by transnational organisations (such as the World Bank and the OECD), well-funded free-market think-tanks (such as the Cato Institute), philanthro-capitalist foundations (such as the Gates Foundation) and educational businesses (such as Pearson) (Ball, 2012).

Efficacy and learning outcomes

Managerialist approaches to education require educational products and services to be measured and compared. In ELT, the most visible manifestation of this requirement is the current ubiquity of learning outcomes. Contemporary coursebooks are full of ‘can-do’ statements, although these are not necessarily of any value to anyone. Examples from one unit of one best-selling course include ‘Now I can understand advice people give about hotels’ and ‘Now I can read an article about unique hotels’ (McCarthy et al. 2014: 74). However, in a world where accountability is paramount, they are deemed indispensable. The problem from a pedagogical perspective is that teaching input does not necessarily equate with learning uptake. Indeed, there is no reason why it should.

Drawing on the Common European Framework of Reference for Languages (CEFR) for inspiration, new performance scales have emerged in recent years. These include the Cambridge English Scale and the Pearson Global Scale of English. Moving away from the broad six categories of the CEFR, such scales permit finer-grained measurement and we now see individual vocabulary and grammar items tagged to levels. Whilst such initiatives undoubtedly support measurements of efficacy, the problem from a pedagogical perspective is that they assume that language learning is linear and incremental, as opposed to complex and jagged.

Given the importance accorded to the measurement of language learning (or what might pass for language learning), it is unsurprising that attention is shifting towards the measurement of what is probably the most important factor impacting on learning: the teaching. Teacher competency scales have been developed by Cambridge Assessment, the British Council and EAQUALS (Evaluation and Accreditation of Quality Language Services), among others.

The backwash effects of the deployment of such scales are yet to be fully experienced, but the likely increase in the perception of both language learning and teacher learning as the synthesis of granularised ‘bits of knowledge’ is cause for concern.

Digital technology

Digital technology may offer advantages to both English language teachers and learners, but its rapid growth in language learning is the result, primarily but not exclusively, of the way it has been promoted by those who stand to gain financially. In education, generally, and in English language teaching, more specifically, advocacy of the privatization of education is always accompanied by advocacy of digitalization. The global market for digital English language learning products was reported to be $2.8 billion in 2015 and is predicted to reach $3.8 billion by 2020 (Ambient Insight, 2016).

In tandem with the increased interest in measuring learning outcomes, there is fierce competition in the market for high-stakes examinations, and these are increasingly digitally delivered and marked. In the face of this competition and in a climate of digital disruption, companies like Pearson and Cambridge English are developing business models of vertical integration where they can provide and sell everything from placement testing, to courseware (either print or delivered through an LMS), teaching, assessment and teacher training. Huge investments are being made in pursuit of such models. Pearson, for example, recently bought GlobalEnglish, Wall Street English, and set up a partnership with Busuu, thus covering all aspects of language learning from resources provision and publishing to off- and online training delivery.

As regards assessment, the most recent adult coursebook from Cambridge University Press (in collaboration with Cambridge English Language Assessment), ‘Empower’ (Doff, et. Al, 2015) sells itself on a combination of course material with integrated, validated assessment.

Besides its potential for scalability (and therefore greater profit margins), the appeal (to some) of platform-delivered English language instruction is that it facilitates assessment that is much finer-grained and actionable in real time. Digitization and testing go hand in hand.

Few English language teachers have been unaffected by the move towards digital. In the state sectors, large-scale digitization initiatives (such as the distribution of laptops for educational purposes, the installation of interactive whiteboards, the move towards blended models of instruction or the move away from printed coursebooks) are becoming commonplace. In the private sectors, online (or partially online) language schools are taking market share from the traditional bricks-and-mortar institutions.

These changes have entailed modifications to the skill-sets that teachers need to have. Two announcements at this conference reflect this shift. First of all, Cambridge English launched their ‘Digital Framework for Teachers’, a matrix of six broad competency areas organised into four levels of proficiency. Secondly, Aqueduto, the Association for Quality Education and Training Online, was launched, setting itself up as an accreditation body for online or blended teacher training courses.

Teachers’ pay and conditions

In the United States, and likely soon in the UK, the move towards privatization is accompanied by an overt attack on teachers’ unions, rights, pay and conditions (Selwyn, 2014). As English language teaching in both public and private sectors is commodified and marketized it is no surprise to find that the drive to bring down costs has a negative impact on teachers worldwide. Gwynt (2015), for example, catalogues cuts in funding, large-scale redundancies, a narrowing of the curriculum, intensified workloads (including the need to comply with ‘quality control measures’), the deskilling of teachers, dilapidated buildings, minimal resources and low morale in an ESOL department in one British further education college. In France, a large-scale study by Wickham, Cagnol, Wright and Oldmeadow (Linguaid, 2015; Wright, 2016) found that EFL teachers in the very competitive private sector typically had multiple employers, limited or no job security, limited sick pay and holiday pay, very little training and low hourly rates that were deteriorating. One of the principle drivers of the pressure on salaries is the rise of online training delivery through Skype and other online platforms, using offshore teachers in low-cost countries such as the Philippines. This type of training represents 15% in value and up to 25% in volume of all language training in the French corporate sector and is developing fast in emerging countries. These examples are illustrative of a broad global trend.


Given the current climate, teachers will benefit from closer networking with fellow professionals in order, not least, to be aware of the rapidly changing landscape. It is likely that they will need to develop and extend their skill sets (especially their online skills and visibility and their specialised knowledge), to differentiate themselves from competitors and to be able to demonstrate that they are in tune with current demands. More generally, it is important to recognise that current trends have yet to run their full course. Conditions for teachers are likely to deteriorate further before they improve. More than ever before, teachers who want to have any kind of influence on the way that marketization and industrialization are shaping their working lives will need to do so collectively.


Ambient Insight. 2016. The 2015-2020 Worldwide Digital English Language Learning Market.

Ball, S. J. 2012. Global Education Inc. Abingdon, Oxon.: Routledge

Doff, A., Thaine, C., Puchta, H., Stranks, J. and P. Lewis-Jones 2015. Empower. Cambridge: Cambridge University Press

Gewirtz, S. 2001. The Managerial School: Post-welfarism and Social Justice in Education. Abingdon, Oxon.: Routledge

Gwynt, W. 2015. ‘The effects of policy changes on ESOL’. Language Issues 26 / 2: 58 – 60

McCarthy, M., McCarten, J. and H. Sandiford 2014. Touchstone 2 Student’s Book Second Edition. Cambridge: Cambridge University Press

Linguaid, 2015. Le Marché de la Formation Langues à l’Heure de la Mondialisation. Guildford: Linguaid

Robertson, S. L. 2006. ‘Globalisation, GATS and trading in education services.’ published by the Centre for Globalisation, Education and Societies, University of Bristol, Bristol BS8 1JA, UK at

Selwyn, N. 2014. Distrusting Educational Technology. New York: Routledge

Wright, R. 2016. ‘My teacher is rich … or not!’ English Teaching Professional 103: 54 – 56



All aboard …

The point of adaptive learning is that it can personalize learning. When we talk about personalization, mention of learning styles is rarely far away. Jose Ferreira of Knewton (but now ex-CEO Knewton) made his case for learning styles in a blog post that generated a superb and, for Ferreira, embarrassing  discussion in the comments that were subsequently deleted by Knewton. fluentu_learning_stylesFluentU (which I reviewed here) clearly approves of learning styles, or at least sees them as a useful way to market their product, even though it is unclear how their product caters to different styles. Busuu claims to be ‘personalised to fit your style of learning’. Voxy, Inc. (according to their company overview) ‘operates a language learning platform that creates custom curricula for English language learners based on their interests, routines, goals, and learning styles’. Bliu Bliu (which I reviewed here) recommended, in a recent blog post, that learners should ‘find out their language learner type and use it to their advantage’ and suggests, as a starter, trying out ‘Bliu Bliu, where pretty much any learner can find what suits them best’. Memrise ‘uses clever science to adapt to your personal learning style’.  Duolingo’s learning tree ‘effectively rearranges itself to suit individual learning styles’ according to founder, Louis Von Ahn. This list could go on and on.

Learning styles are thriving in ELT coursebooks, too. Here are just three recent examples for learners of various ages. Today! by Todd, D. & Thompson, T. (Pearson, 2014) ‘shapes learning around individual students with graded difficulty practice for mixed-ability classes’ and ‘makes testing mixed-ability classes easier with tests that you can personalise to students’ abilities’.today

Move  it! by Barraclough, C., Beddall, F., Stannett, K., Wildman, J. (Pearson, 2015) offers ‘personalized pathways [which] allow students to optimize their learning outcomes’ and a ‘complete assessment package to monitor students’ learning process’. pearson_move_it

Open Mind Elementary (A2) 2nd edition by Rogers, M., Taylor-Knowles, J. & Taylor-Knowles, S. (Macmillan, 2014) has a whole page devoted to learning styles in the ‘Life Skills’ strand of the course. The scope and sequence describes it in the following terms: ‘Thinking about what you like to do to find your learning style and improve how you learn English’. Here’s the relevant section:macmillan_coursebook

rosenber-learning-stylesMethodology books offer more tips for ways that teachers can cater to different learning styles. Recent examples include Patrycja Kamińska’s  Learning Styles and Second Language Education (Cambridge Scholars, 2014), Tammy Gregersen & Peter D. MacIntyre’s Capitalizing on Language Learners’ Individuality (Multilingual Matters, 2014) and Marjorie Rosenberg’s Spotlight on Learning Styles (Delta Publishing, 2013). Teacher magazines show a continuing interest  in the topic. Humanising Language Teaching and English Teaching Professional are particularly keen. The British Council offers courses about learning styles and its Teaching English website has many articles and lesson plans on the subject (my favourite explains that your students will be more successful if you match your teaching style to their learning styles), as do the websites of all the major publishers. Most ELT conferences will also offer something on the topic.oup_learning_styles

How about language teaching qualifications and frameworks? The Cambridge English Teaching Framework contains a component entitled ‘Understanding learners’ and this specifies as the first part of the component a knowledge of concepts such as learning styles (e.g., visual, auditory, kinaesthetic), multiple intelligences, learning strategies, special needs, affect. Unsurprisingly, the Cambridge CELTA qualification requires successful candidates to demonstrate an awareness of the different learning styles and preferences that adults bring to learning English. The Cambridge DELTA requires successful candidates to accommodate learners according to their different abilities, motivations, and learning styles. The Eaquals Framework for Language Teacher Training and Development requires teachers at Development Phase 2 t0 have the skill of determining and anticipating learners’ language learning needs and learning styles at a range of levels, selecting appropriate ways of finding out about these.

Outside of ELT, learning styles also continue to thrive. Phil Newton (2015 ‘The learning styles myth is thriving in higher education’ Frontiers in Psychology 6: 1908) carried out a survey of educational publications  (higher education) between 2013 and 2016, and found that an overwhelming majority (89%) implicitly or directly endorse the use of learning styles. He also cites research showing that 93% of UK schoolteachers believe that ‘individuals learn better when they receive information in their preferred Learning Style’, with similar figures in other countries. 72% of Higher Education institutions in the US teach ‘learning style theory’ as part of faculty development for online teachers. Advocates of learning styles in English language teaching are not alone.

But, unfortunately, …

In case you weren’t aware of it, there is a rather big problem with learning styles. There is a huge amount of research  which suggests that learning styles (and, in particular, teaching attempts to cater to learning styles) need to be approached with extreme scepticism. Much of this research was published long before the blog posts, advertising copy, books and teaching frameworks (listed above) were written.  What does this research have to tell us?

The first problem concerns learning styles taxonomies. There are three issues here: many people do not fit one particular style, the information used to assign people to styles is often inadequate, and there are so many different styles that it becomes cumbersome to link particular learners to particular styles (Kirschner, P. A. & van Merriënboer, J. J. G. 2013. ‘Do Learners Really Know Best? Urban Legends in Education’ Educational Psychologist, 48 / 3, 169-183). To summarise, given the lack of clarity as to which learning styles actually exist, it may be ‘neither viable nor justified’ for learning styles to form the basis of lesson planning (Hall, G. 2011. Exploring English Language Teaching. Abingdon, Oxon.: Routledge p.140). More detailed information about these issues can be found in the following sources:

Coffield, F., Moseley, D., Hall, E. & Ecclestone, K. 2004. Learning styles and pedagogy in post-16 learning: a systematic and critical review. London: Learning and Skills Research Centre

Dembo, M. H. & Howard, K. 2007. Advice about the use of learning styles: a major myth in education. Journal of College Reading & Learning 37 / 2: 101 – 109

Kirschner, P. A. 2017. Stop propagating the learning styles myth. Computers & Education 106: 166 – 171

Pashler, H., McDaniel, M., Rohrer, D. & Bjork, E. 2008. Learning styles concepts and evidence. Psychological Science in the Public Interest 9 / 3: 105 – 119

Riener, C. & Willingham, D. 2010. The myth of learning styles. Change – The Magazine of Higher Learning

The second problem concerns what Pashler et al refer to as the ‘meshing hypothesis’: the idea that instructional interventions can be effectively tailored to match particular learning styles. Pashler et al concluded that the available taxonomies of student types do not offer any valid help in deciding what kind of instruction to offer each individual. Even in 2008, their finding was not new. Back in 1978, a review of 15 studies that looked at attempts to match learning styles to approaches to first language reading instruction, concluded that modality preference ‘has not been found to interact significantly with the method of teaching’ (Tarver, Sara & M. M. Dawson. 1978. Modality preference and the teaching of reading. Journal of Learning Disabilities 11: 17 – 29). The following year, two other researchers concluded that [the assumption that one can improve instruction by matching materials to children’s modality strengths] appears to lack even minimal empirical support. (Arter, J.A. & Joseph A. Jenkins 1979 ‘Differential diagnosis-prescriptive teaching: A critical appraisal’ Review of Educational Research 49: 517-555). Fast forward 20 years to 1999, and Stahl (Different strokes for different folks?’ American Educator Fall 1999 pp. 1 – 5) was writing the reason researchers roll their eyes at learning styles is the utter failure to find that assessing children’s learning styles and matching to instructional methods has any effect on learning. The area with the most research has been the global and analytic styles […]. Over the past 30 years, the names of these styles have changed – from ‘visual’ to ‘global’ and from ‘auditory’ to ‘analytic’ – but the research results have not changed. For a recent evaluation of the practical applications of learning styles, have a look at Rogowsky, B. A., Calhoun, B. M. & Tallal, P. 2015. ‘Matching Learning Style to Instructional Method: Effects on Comprehension’ Journal of Educational Psychology 107 / 1: 64 – 78. Even David Kolb, the Big Daddy of learning styles, now concedes that there is no strong evidence that teachers should tailor their instruction to their student’s particular learning styles (reported in Glenn, D. 2009. ‘Matching teaching style to learning style may not help students’ The Chronicle of Higher Education). To summarise, the meshing hypothesis is entirely unsupported in the scientific literature. It is a myth (Howard-Jones, P. A. 2014. ‘Neuroscience and education: myths and messages’ Nature Reviews Neuroscience).

This brings me back to the blog posts, advertising blurb, coursebooks, methodology books and so on that continue to tout learning styles. The writers of these texts typically do not acknowledge that there’s a problem of any kind. Are they unaware of the research? Or are they aware of it, but choose not to acknowledge it? I suspect that the former is often the case with the app developers. But if the latter is the case, what  might those reasons be? In the case of teacher training specifications, the reason is probably practical. Changing a syllabus is an expensive and time-consuming operation. But in the case of some of the ELT writers, I suspect that they hang on in there because they so much want to believe.

As Newton (2015: 2) notes, intuitively, there is much that is attractive about the concept of Learning Styles. People are obviously different and Learning Styles appear to offer educators a way to accommodate individual learner differences.  Pashler et al (2009:107) add that another related factor that may play a role in the popularity of the learning-styles approach has to do with responsibility. If a person or a person’s child is not succeeding or excelling in school, it may be more comfortable for the person to think that the educational system, not the person or the child himself or herself, is responsible. That is, rather than attribute one’s lack of success to any lack of ability or effort on one’s part, it may be more appealing to think that the fault lies with instruction being inadequately tailored to one’s learning style. In that respect, there may be linkages to the self-esteem movement that became so influential, internationally, starting in the 1970s. There is no reason to doubt that many of those who espouse learning styles have good intentions.

No one, I think, seriously questions whether learners might not benefit from a wide variety of input styles and learning tasks. People are obviously different. MacIntyre et al (MacIntyre, P.D., Gregersen, T. & Clément, R. 2016. ‘Individual Differences’ in Hall, G. (ed.) The Routledge Handbook of English Language Teaching. Abingdon, Oxon: Routledge, pp.310 – 323, p.319) suggest that teachers might consider instructional methods that allow them to capitalise on both variety and choice and also help learners find ways to do this for themselves inside and outside the classroom. Jill Hadfield (2006. ‘Teacher Education and Trainee Learning Style’ RELC Journal 37 / 3: 369 – 388) recommends that we design our learning tasks across the range of learning styles so that our trainees can move across the spectrum, experiencing both the comfort of matching and the challenge produced by mismatching. But this is not the same thing as claiming that identification of a particular learning style can lead to instructional decisions. The value of books like Rosenberg’s Spotlight on Learning Styles lies in the wide range of practical suggestions for varying teaching styles and tasks. They contain ideas of educational value: it is unfortunate that the theoretical background is so thin.

In ELT things are, perhaps, beginning to change. Russ Mayne’s blog post Learning styles: facts and fictions in 2012 got a few heads nodding, and he followed this up 2 years later with a presentation at IATEFL looking at various aspects of ELT, including learning styles, which have little or no scientific credibility. Carol Lethaby and Patricia Harries gave a talk at IATEFL 2016, Changing the way we approach learning styles in teacher education, which was also much discussed and shared online. They also had an article in ELT Journal called Learning styles and teacher training: are we perpetuating neuromyths? (2016 ELTJ 70 / 1: 16 – 27). Even Pearson, in a blog post of November 2016, (Mythbusters: A review of research on learning styles) acknowledges that there is a shocking lack of evidence to support the core learning styles claim that customizing instruction based on students’ preferred learning styles produces better learning than effective universal instruction, concluding that  it is impossible to recommend learning styles as an effective strategy for improving learning outcomes.



About two and a half years ago when I started writing this blog, there was a lot of hype around adaptive learning and the big data which might drive it. Two and a half years are a long time in technology. A look at Google Trends suggests that interest in adaptive learning has been pretty static for the last couple of years. It’s interesting to note that 3 of the 7 lettered points on this graph are Knewton-related media events (including the most recent, A, which is Knewton’s latest deal with Hachette) and 2 of them concern McGraw-Hill. It would be interesting to know whether these companies follow both parts of Simon Cowell’s dictum of ‘Create the hype, but don’t ever believe it’.


A look at the Hype Cycle (see here for Wikipedia’s entry on the topic and for criticism of the hype of Hype Cycles) of the IT research and advisory firm, Gartner, indicates that both big data and adaptive learning have now slid into the ‘trough of disillusionment’, which means that the market has started to mature, becoming more realistic about how useful the technologies can be for organizations.

A few years ago, the Gates Foundation, one of the leading cheerleaders and financial promoters of adaptive learning, launched its Adaptive Learning Market Acceleration Program (ALMAP) to ‘advance evidence-based understanding of how adaptive learning technologies could improve opportunities for low-income adults to learn and to complete postsecondary credentials’. It’s striking that the program’s aims referred to how such technologies could lead to learning gains, not whether they would. Now, though, with the publication of a report commissioned by the Gates Foundation to analyze the data coming out of the ALMAP Program, things are looking less rosy. The report is inconclusive. There is no firm evidence that adaptive learning systems are leading to better course grades or course completion. ‘The ultimate goal – better student outcomes at lower cost – remains elusive’, the report concludes. Rahim Rajan, a senior program office for Gates, is clear: ‘There is no magical silver bullet here.’

The same conclusion is being reached elsewhere. A report for the National Education Policy Center (in Boulder, Colorado) concludes: Personalized Instruction, in all its many forms, does not seem to be the transformational technology that is needed, however. After more than 30 years, Personalized Instruction is still producing incremental change. The outcomes of large-scale studies and meta-analyses, to the extent they tell us anything useful at all, show mixed results ranging from modest impacts to no impact. Additionally, one must remember that the modest impacts we see in these meta-analyses are coming from blended instruction, which raises the cost of education rather than reducing it (Enyedy, 2014: 15 -see reference at the foot of this post). In the same vein, a recent academic study by Meg Coffin Murray and Jorge Pérez (2015, ‘Informing and Performing: A Study Comparing Adaptive Learning to Traditional Learning’) found that ‘adaptive learning systems have negligible impact on learning outcomes’.

future-ready-learning-reimagining-the-role-of-technology-in-education-1-638In the latest educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Reimagining the Role of Technology in Education’, 2016) the only mentions of the word ‘adaptive’ are in the context of testing. And the latest OECD report on ‘Students, Computers and Learning: Making the Connection’ (2015), finds, more generally, that information and communication technologies, when they are used in the classroom, have, at best, a mixed impact on student performance.

There is, however, too much money at stake for the earlier hype to disappear completely. Sponsored cheerleading for adaptive systems continues to find its way into blogs and national magazines and newspapers. EdSurge, for example, recently published a report called ‘Decoding Adaptive’ (2016), sponsored by Pearson, that continues to wave the flag. Enthusiastic anecdotes take the place of evidence, but, for all that, it’s a useful read.

In the world of ELT, there are plenty of sales people who want new products which they can call ‘adaptive’ (and gamified, too, please). But it’s striking that three years after I started following the hype, such products are rather thin on the ground. Pearson was the first of the big names in ELT to do a deal with Knewton, and invested heavily in the company. Their relationship remains close. But, to the best of my knowledge, the only truly adaptive ELT product that Pearson offers is the PTE test.

Macmillan signed a contract with Knewton in May 2013 ‘to provide personalized grammar and vocabulary lessons, exam reviews, and supplementary materials for each student’. In December of that year, they talked up their new ‘big tree online learning platform’: ‘Look out for the Big Tree logo over the coming year for more information as to how we are using our partnership with Knewton to move forward in the Language Learning division and create content that is tailored to students’ needs and reactive to their progress.’ I’ve been looking out, but it’s all gone rather quiet on the adaptive / platform front.

In September 2013, it was the turn of Cambridge to sign a deal with Knewton ‘to create personalized learning experiences in its industry-leading ELT digital products for students worldwide’. This year saw the launch of a major new CUP series, ‘Empower’. It has an online workbook with personalized extra practice, but there’s nothing (yet) that anyone would call adaptive. More recently, Cambridge has launched the online version of the 2nd edition of Touchstone. Nothing adaptive there, either.

Earlier this year, Cambridge published The Cambridge Guide to Blended Learning for Language Teaching, edited by Mike McCarthy. It contains a chapter by M.O.Z. San Pedro and R. Baker on ‘Adaptive Learning’. It’s an enthusiastic account of the potential of adaptive learning, but it doesn’t contain a single reference to language learning or ELT!

So, what’s going on? Skepticism is becoming the order of the day. The early hype of people like Knewton’s Jose Ferreira is now understood for what it was. Companies like Macmillan got their fingers badly burnt when they barked up the wrong tree with their ‘Big Tree’ platform.

Noel Enyedy captures a more contemporary understanding when he writes: Personalized Instruction is based on the metaphor of personal desktop computers—the technology of the 80s and 90s. Today’s technology is not just personal but mobile, social, and networked. The flexibility and social nature of how technology infuses other aspects of our lives is not captured by the model of Personalized Instruction, which focuses on the isolated individual’s personal path to a fixed end-point. To truly harness the power of modern technology, we need a new vision for educational technology (Enyedy, 2014: 16).

Adaptive solutions aren’t going away, but there is now a much better understanding of what sorts of problems might have adaptive solutions. Testing is certainly one. As the educational technology plan from the U.S. Department of Education (‘Future Ready Learning: Re-imagining the Role of Technology in Education’, 2016) puts it: Computer adaptive testing, which uses algorithms to adjust the difficulty of questions throughout an assessment on the basis of a student’s responses, has facilitated the ability of assessments to estimate accurately what students know and can do across the curriculum in a shorter testing session than would otherwise be necessary. In ELT, Pearson and EF have adaptive tests that have been well researched and designed.

Vocabulary apps which deploy adaptive technology continue to become more sophisticated, although empirical research is lacking. Automated writing tutors with adaptive corrective feedback are also developing fast, and I’ll be writing a post about these soon. Similarly, as speech recognition software improves, we can expect to see better and better automated adaptive pronunciation tutors. But going beyond such applications, there are bigger questions to ask, and answers to these will impact on whatever direction adaptive technologies take. Large platforms (LMSs), with or without adaptive software, are already beginning to look rather dated. Will they be replaced by integrated apps, or are apps themselves going to be replaced by bots (currently riding high in the Hype Cycle)? In language learning and teaching, the future of bots is likely to be shaped by developments in natural language processing (another topic about which I’ll be blogging soon). Nobody really has a clue where the next two and a half years will take us (if anywhere), but it’s becoming increasingly likely that adaptive learning will be only one very small part of it.


Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning. Boulder, CO: National Education Policy Center. Retrieved 17.07.16 from

Ok, let’s be honest here. This post is about teacher training, but ‘development’ sounds more respectful, more humane, more modern. Teacher development (self-initiated, self-evaluated, collaborative and holistic) could be adaptive, but it’s unlikely that anyone will want to spend the money on developing an adaptive teacher development platform any time soon. Teacher training (top-down, pre-determined syllabus and externally evaluated) is another matter. If you’re not too clear about this distinction, see Penny Ur’s article in The Language Teacher.

decoding_adaptive jpgThe main point of adaptive learning tools is to facilitate differentiated instruction. They are, as Pearson’s latest infomercial booklet describes them, ‘educational technologies that can respond to a student’s interactions in real-time by automatically providing the student with individual support’. Differentiation or personalization (or whatever you call it) is, as I’ve written before  , the declared goal of almost everyone in educational power these days. What exactly it is may be open to question (see Michael Feldstein’s excellent article), as may be the question of whether or not it is actually such a desideratum (see, for example, this article ). But, for the sake of argument, let’s agree that it’s mostly better than one-size-fits-all.

Teachers around the world are being encouraged to adopt a differentiated approach with their students, and they are being encouraged to use technology to do so. It is technology that can help create ‘robust personalized learning environments’ (says the White House)  . Differentiation for language learners could be facilitated by ‘social networking systems, podcasts, wikis, blogs, encyclopedias, online dictionaries, webinars, online English courses,’ etc. (see Alexandra Chistyakova’s post on eltdiary ).

But here’s the crux. If we want teachers to adopt a differentiated approach, they really need to have experienced it themselves in their training. An interesting post on edweek  sums this up: If professional development is supposed to lead to better pedagogy that will improve student learning AND we are all in agreement that modeling behaviors is the best way to show people how to do something, THEN why not ensure all professional learning opportunities exhibit the qualities we want classroom teachers to have?

Differentiated teacher development / training is rare. According to the Center for Public Education’s Teaching the Teachers report , almost all teachers participate in ‘professional development’ (PD) throughout the year. However, a majority of those teachers find the PD in which they participate ineffective. Typically, the development is characterised by ‘drive-by’ workshops, one-size-fits-all presentations, ‘been there, done that’ topics, little or no modelling of what is being taught, a focus on rotating fads and a lack of follow-up. This report is not specifically about English language teachers, but it will resonate with many who are working in English language teaching around the world.cindy strickland

The promotion of differentiated teacher development is gaining traction: see here or here , for example, or read Cindy A. Strickland’s ‘Professional Development for Differentiating Instruction’.

Remember, though, that it’s really training, rather than development, that we’re talking about. After all, if one of the objectives is to equip teachers with a skills set that will enable them to become more effective instructors of differentiated learning, this is most definitely ‘training’ (notice the transitivity of the verbs ‘enable’ and ‘equip’!). In this context, a necessary starting point will be some sort of ‘knowledge graph’ (which I’ve written about here ). For language teachers, these already exist, including the European Profiling Grid , the Eaquals Framework for Language Teacher Training and Development, the Cambridge English Teaching Framework and the British Council’s Continuing Professional Development Framework (CPD) for Teachers  . We can expect these to become more refined and more granularised, and a partial move in this direction is the Cambridge English Digital Framework for Teachers  . Once a knowledge graph is in place, the next step will be to tag particular pieces of teacher training content (e.g. webinars, tasks, readings, etc.) to locations in the framework that is being used. It would not be too complicated to engineer dynamic frameworks which could be adapted to individual or institutional needs.cambridge_english_teaching_framework jpg

This process will be facilitated by the fact that teacher training content is already being increasingly granularised. Whether it’s an MA in TESOL or a shorter, more practically oriented course, things are getting more and more bite-sized, with credits being awarded to these short bites, as course providers face stiffer competition and respond to market demands.

Visible classroom home_page_screenshotClassroom practice could also form part of such an adaptive system. One tool that could be deployed would be Visible Classroom , an automated system for providing real-time evaluative feedback for teachers. There is an ‘online dashboard providing teachers with visual information about their teaching for each lesson in real-time. This includes proportion of teacher talk to student talk, number and type of questions, and their talking speed.’ John Hattie, who is behind this project, says that teachers ‘account for about 30% of the variance in student achievement and [are] the largest influence outside of individual student effort.’ Teacher development with a tool like Visible Classroom is ultimately all about measuring teacher performance (against a set of best-practice benchmarks identified by Hattie’s research) in order to improve the learning outcomes of the students.Visible_classroom_panel_image jpg

You may have noticed the direction in which this part of this blog post is going. I began by talking about social networking systems, podcasts, wikis, blogs and so on, and just now I’ve mentioned the summative, credit-bearing possibilities of an adaptive teacher development training programme. It’s a tension that is difficult to resolve. There’s always a paradox in telling anyone that they are going to embark on a self-directed course of professional development. Whoever pays the piper calls the tune and, if an institution decides that it is worth investing significant amounts of money in teacher development, they will want a return for their money. The need for truly personalised teacher development is likely to be overridden by the more pressing need for accountability, which, in turn, typically presupposes pre-determined course outcomes, which can be measured in some way … so that quality (and cost-effectiveness and so on) can be evaluated.

Finally, it’s worth asking if language teaching (any more than language learning) can be broken down into small parts that can be synthesized later into a meaningful and valuable whole. Certainly, there are some aspects of language teaching (such as the ability to use a dashboard on an LMS) which lend themselves to granularisation. But there’s a real danger of losing sight of the forest of teaching if we focus on the individual trees that can be studied and measured.

Back in December 2013, in an interview with eltjam , David Liu, COO of the adaptive learning company, Knewton, described how his company’s data analysis could help ELT publishers ‘create more effective learning materials’. He focused on what he calls ‘content efficacy[i]’ (he uses the word ‘efficacy’ five times in the interview), a term which he explains below:

A good example is when we look at the knowledge graph of our partners, which is a map of how concepts relate to other concepts and prerequisites within their product. There may be two or three prerequisites identified in a knowledge graph that a student needs to learn in order to understand a next concept. And when we have hundreds of thousands of students progressing through a course, we begin to understand the efficacy of those said prerequisites, which quite frankly were made by an author or set of authors. In most cases they’re quite good because these authors are actually good in what they do. But in a lot of cases we may find that one of those prerequisites actually is not necessary, and not proven to be useful in achieving true learning or understanding of the current concept that you’re trying to learn. This is interesting information that can be brought back to the publisher as they do revisions, as they actually begin to look at the content as a whole.

One commenter on the post, Tom Ewens, found the idea interesting. It could, potentially, he wrote, give us new insights into how languages are learned much in the same way as how corpora have given us new insights into how language is used. Did Knewton have any plans to disseminate the information publicly, he asked. His question remains unanswered.

At the time, Knewton had just raised $51 million (bringing their total venture capital funding to over $105 million). Now, 16 months later, Knewton have launched their new product, which they are calling Knewton Content Insights. They describe it as the world’s first and only web-based engine to automatically extract statistics comparing the relative quality of content items — enabling us to infer more information about student proficiency and content performance than ever before possible.

The software analyses particular exercises within the learning content (and particular items within them). It measures the relative difficulty of individual items by, for example, analysing how often a question is answered incorrectly and how many tries it takes each student to answer correctly. It also looks at what they call ‘exhaustion’ – how much content students are using in a particular area – and whether they run out of content. The software can correlate difficulty with exhaustion. Lastly, it analyses what they call ‘assessment quality’ – how well  individual questions assess a student’s understanding of a topic.

Knewton’s approach is premised on the idea that learning (in this case language learning) can be broken down into knowledge graphs, in which the information that needs to be learned can be arranged and presented hierarchically. The ‘granular’ concepts are then ‘delivered’ to the learner, and Knewton’s software can optimise the delivery. The first problem, as I explored in a previous post, is that language is a messy, complex system: it doesn’t lend itself terribly well to granularisation. The second problem is that language learning does not proceed in a linear, hierarchical way: it is also messy and complex. The third is that ‘language learning content’ cannot simply be delivered: a process of mediation is unavoidable. Are the people at Knewton unaware of the extensive literature devoted to the differences between synthetic and analytic syllabuses, of the differences between product-oriented and process-oriented approaches? It would seem so.

Knewton’s ‘Content Insights’ can only, at best, provide some sort of insight into the ‘language knowledge’ part of any learning content. It can say nothing about the work that learners do to practise language skills, since these are not susceptible to granularisation: you simply can’t take a piece of material that focuses on reading or listening and analyse its ‘content efficacy at the concept level’. Because of this, I predicted (in the post about Knowledge Graphs) that the likely focus of Knewton’s analytics would be discrete item, sentence-level grammar (typically tenses). It turns out that I was right.

Knewton illustrate their new product with screen shots such as those below.















They give a specific example of the sort of questions their software can answer. It is: do students generally find the present simple tense easier to understand than the present perfect tense? Doh!

It may be the case that Knewton Content Insights might optimise the presentation of this kind of grammar, but optimisation of this presentation and practice is highly unlikely to have any impact on the rate of language acquisition. Students are typically required to study the present perfect at every level from ‘elementary’ upwards. They have to do this, not because the presentation in, say, Headway, is not optimised. What they need is to spend a significantly greater proportion of their time on ‘language use’ and less on ‘language knowledge’. This is not just my personal view: it has been extensively researched, and I am unaware of any dissenting voices.

The number-crunching in Knewton Content Insights is unlikely, therefore, to lead to any actionable insights. It is, however, very likely to lead (as writer colleagues at Pearson and other publishers are finding out) to an obsession with measuring the ‘efficacy’ of material which, quite simply, cannot meaningfully be measured in this way. It is likely to distract from much more pressing issues, notably the question of how we can move further and faster away from peddling sentence-level, discrete-item grammar.

In the long run, it is reasonable to predict that the attempt to optimise the delivery of language knowledge will come to be seen as an attempt to tackle the wrong question. It will make no significant difference to language learners and language learning. In the short term, how much time and money will be wasted?

[i] ‘Efficacy’ is the buzzword around which Pearson has built its materials creation strategy, a strategy which was launched around the same time as this interview. Pearson is a major investor in Knewton.

There are a number of reasons why we sometimes need to describe a person’s language competence using a single number. Most of these are connected to the need for a shorthand to differentiate people, in summative testing or in job selection, for example. Numerical (or grade) allocation of this kind is so common (and especially in times when accountability is greatly valued) that it is easy to believe that this number is an objective description of a concrete entity, rather than a shorthand description of an abstract concept. In the process, the abstract concept (language competence) becomes reified and there is a tendency to stop thinking about what it actually is.

Language is messy. It’s a complex, adaptive system of communication which has a fundamentally social function. As Diane Larsen-Freeman and others have argued patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent of one another but are facets of the same complex adaptive system. […] The system consists of multiple agents (the speakers in the speech community) interacting with one another [and] the structures of language emerge from interrelated patterns of experience, social interaction, and cognitive mechanisms.

As such, competence in language use is difficult to measure. There are ways of capturing some of it. Think of the pages and pages of competency statements in the Common European Framework, but there has always been something deeply unsatisfactory about documents of this kind. How, for example, are we supposed to differentiate, exactly and objectively, between, say, can participate fully in an interview (C1) and can carry out an effective, fluent interview (B2)? The short answer is that we can’t. There are too many of these descriptors anyway and, even if we did attempt to use such a detailed tool to describe language competence, we would still be left with a very incomplete picture. There is at least one whole book devoted to attempts to test the untestable in language education (edited by Amos Paran and Lies Sercu, Multilingual Matters, 2010).

So, here is another reason why we are tempted to use shorthand numerical descriptors (such as A1, A2, B1, etc.) to describe something which is very complex and abstract (‘overall language competence’) and to reify this abstraction in the process. From there, it is a very short step to making things even more numerical, more scientific-sounding. Number-creep in recent years has brought us the Pearson Global Scale of English which can place you at a precise point on a scale from 10 to 90. Not to be outdone, Cambridge English Language Assessment now has a scale that runs from 80 points to 230, although Cambridge does, at least, allocate individual scores for four language skills.

As the title of this post suggests (in its reference to Stephen Jay Gould’s The Mismeasure of Man), I am suggesting that there are parallels between attempts to measure language competence and the sad history of attempts to measure ‘general intelligence’. Both are guilty of the twin fallacies of reification and ranking – the ordering of complex information as a gradual ascending scale. These conceptual fallacies then lead us, through the way that they push us to think about language, into making further conceptual errors about language learning. We start to confuse language testing with the ways that language learning can be structured.

We begin to granularise language. We move inexorably away from difficult-to-measure hazy notions of language skills towards what, on the surface at least, seem more readily measurable entities: words and structures. We allocate to them numerical values on our testing scales, so that an individual word can be deemed to be higher or lower on the scale than another word. And then we have a syllabus, a synthetic syllabus, that lends itself to digital delivery and adaptive manipulation. We find ourselves in a situation where materials writers for Pearson, writing for a particular ‘level’, are only allowed to use vocabulary items and grammatical structures that correspond to that ‘level’. We find ourselves, in short, in a situation where the acquisition of a complex and messy system is described as a linear, additive process. Here’s an example from the Pearson website: If you score 29 on the scale, you should be able to identify and order common food and drink from a menu; at 62, you should be able to write a structured review of a film, book or play. And because the GSE is so granular in nature, you can conquer smaller steps more often; and you are more likely to stay motivated as you work towards your goal. It’s a nonsense, a nonsense that is dictated by the needs of testing and adaptive software, but the sciency-sounding numbers help to hide the conceptual fallacies that lie beneath.

Perhaps, though, this doesn’t matter too much for most language learners. In the early stages of language learning (where most language learners are to be found), there are countless millions of people who don’t seem to mind the granularised programmes of Duolingo or Rosetta Stone, or the Grammar McNuggets of coursebooks. In these early stages, anything seems to be better than nothing, and the testing is relatively low-stakes. But as a learner’s interlanguage becomes more complex, and as the language she needs to acquire becomes more complex, attempts to granularise it and to present it in a linearly additive way become more problematic. It is for this reason, I suspect, that the appeal of granularised syllabuses declines so rapidly the more progress a learner makes. It comes as no surprise that, the further up the scale you get, the more that both teachers and learners want to get away from pre-determined syllabuses in coursebooks and software.

Adaptive language learning software is continuing to gain traction in the early stages of learning, in the initial acquisition of basic vocabulary and structures and in coming to grips with a new phonological system. It will almost certainly gain even more. But the challenge for the developers and publishers will be to find ways of making adaptive learning work for more advanced learners. Can it be done? Or will the mismeasure of language make it impossible?

Pearson’s ‘Efficacy’ initiative is a series of ‘commitments designed to measure and increase the company’s impact on learning outcomes around the world’. The company’s dedicated website  offers two glossy brochures with a wide range of interesting articles, a good questionnaire tool that can be used by anyone to measure the efficacy of their own educational products or services, as well as an excellent selection of links to other articles, some of which are critical of the initiative. These include Michael Feldstein’s long blog post  ‘Can Pearson Solve the Rubric’s Cube?’ which should be a first port of call for anyone wanting to understand better what is going on.

What does it all boil down to? The preface to Pearson’s ‘Asking More: the Path to Efficacy’ by CEO John Fallon provides a succinct introduction. Efficacy in education, says Fallon, is ‘making a measurable impact on someone’s life through learning’. ‘Measurable’ is the key word, because, as Fallon continues, ‘it is increasingly possible to determine what works and what doesn’t in education, just as in healthcare.’ We need ‘a relentless focus’ on ‘the learning outcomes we deliver’ because it is these outcomes that can be measured in ‘a systematic, evidence-based fashion’. Measurement, of course, is all the easier when education is delivered online, ‘real-time learner data’ can be captured, and the power of analytics can be deployed.

Pearson are very clearly aligning themselves with recent moves towards a more evidence-based education. In the US, Obama’s Race to the Top is one manifestation of this shift. Britain (with, for example, the Education Endowment Foundation) and France (with its Fonds d’Expérimentation pour la Jeunesse ) are both going in the same direction. Efficacy is all about evidence-based practice.

Both the terms ‘efficacy’ and ‘evidence-based practice’ come originally from healthcare. Fallon references this connection in the quote two paragraphs above. In the UK last year, Ben Goldacre (medical doctor, author of ‘Bad Science’ and a relentless campaigner against pseudo-science) was commissioned by the UK government to write a paper entitled ‘Building Evidence into Education’ . In this, he argued for the need to introduce randomized controlled trials into education in a similar way to their use in medicine.

As Fallon observed in the preface to the Pearson ‘Efficacy’ brochure, this all sounds like ‘common sense’. But, as Ben Goldacre discovered, things are not so straightforward in education. An excellent article in The Guardian outlined some of the problems in Goldacre’s paper.

With regard to ELT, Pearson’s ‘Efficacy’ initiative will stand or fall with the validity of their Global Scale of English, discussed in my March post ‘Knowledge Graphs’ . However, there are a number of other considerations that make the whole evidence-based / efficacy business rather less common-sensical than might appear at first glance.

  • The purpose of English language teaching and learning (at least, in compulsory education) is rather more than simply the mastery of grammatical and lexical systems, or the development of particular language skills. Some of these other purposes (e.g. the development of intercultural competence or the acquisition of certain 21st century skills, such as creativity) continue to be debated. There is very little consensus about the details of what these purposes (or outcomes) might be, or how they can be defined. Without consensus about these purposes / outcomes, it is not possible to measure them.
  • Even if we were able to reach a clear consensus, many of these outcomes do not easily lend themselves to measurement, and even less to low-cost measurement.
  • Although we clearly need to know what ‘works’ and what ‘doesn’t work’ in language teaching, there is a problem in assigning numerical values. As the EduThink blog observes, ‘the assignation of numerical values is contestable, problematic and complex. As teachers and researchers we should be engaging with the complexity [of education] rather than the reductive simplicities of [assigning numerical values]’.
  • Evidence-based medicine has resulted in unquestionable progress, but it is not without its fierce critics. A short summary of the criticisms can be found here .  It would be extremely risky to assume that a contested research procedure from one discipline can be uncritically applied to another.
  • Kathleen Graves, in her plenary at IATEFL 2014, ‘The Efficiency of Inefficiency’, explicitly linked health care and language teaching. She described a hospital where patient care was as much about human relationships as it was about medical treatment, an aspect of the hospital that went unnoticed by efficiency experts, since this could not be measured. See this blog for a summary of her talk.

These issues need to be discussed much further before we get swept away by the evidence-based bandwagon. If they are not, the real danger is that, as John Fallon cautions, we end up counting things that don’t really count, and we don’t count the things that really do count. Somehow, I doubt that an instrument like the Global Scale of English will do the trick.

‘Adaptive’ is a buzzword in the marketing of educational products. Chris Dragon, President of Pearson Digital Learning, complained on the Pearson Research blog. that there are so many EdTech providers claiming to be ‘adaptive’ that you have to wonder if they are not using the term too loosely. He talks about semantic satiation, the process whereby ‘temporary loss of meaning [is] experienced when one is exposed to the uninterrupted repetition of a word or phrase’. He then goes on to claim that Pearson’s SuccessMaker (‘educational software that differentiates and personalizes K-8 reading and math instruction’) is the real adaptive McCoy.

‘Adaptive’ is also a buzzword in marketing itself. Google the phrase ‘adaptive marketing’ and you’ll quickly come up with things like Adaptive Marketing Set to Become the Next Big Thing or Adaptive marketing changes the name of the game. Adaptive marketing is what you might expect: the use of big data to track customers and enable ‘marketers to truly tailor their activities in rapid and unparalleled ways to meet their customers’ interests and needs’ (Advertising Age, February 2012). It strikes me that this sets up an extraordinary potential loop: students using adaptive learning software that generates a huge amount of data which could then be used by adaptive marketers to sell other products.

I decided it might be interesting to look at the way one adaptive software company markets itself. Knewton, for example, which claims its products are more adaptive than anybody else’s.

Knewton clearly spend a lot of time and money on their marketing efforts. There is their blog and a magazine called ‘The Knerd’. There are very regular interviews by senior executives with newspapers, magazines and other blogs. There are very frequent conference presentations. All of these are easily accessible, so it is quite easy to trace Knewton’s marketing message. And even easier when they are so open about it. David Liu, Chief Operating Officer has given an interview  in which he outlines his company’s marketing strategy. Knewton, he says, focuses on driving organic interests and traffic. To that end, we have a digital marketing group that’s highly skilled and focused on creating content marketing so users, influencers and partners alike can understand our product, the value we bring and how to work with us. We also use a lot of advanced digital and online lead generation type of techniques to target potential partners and users to be able to get the right people in those discussions.

The message consists of four main strands, which I will call EdTech, EduCation, EduBusiness and EdUtopia. Depending on the audience, the marketing message will be adapted, with one or other of these strands given more prominence.

1 EdTech

Hardly surprisingly, Knewton focuses on what they call their ‘heavy duty infrastructure for an adaptive world’. They are very proud of their adaptive credentials, their ‘rigorous data science’. The basic message is that ‘only Knewton provides true personalization for any student, anywhere’. They are not shy of using technical jargon and providing technical details to prove their point.

2 EduCation

The key message here is effectiveness (Knewton also uses the term ‘efficacy’). Statistics about growth in pass rates and reduction in withdrawal rates at institutions are cited. At the same time, teachers are directly appealed to with statements like ‘as a teacher, you get tools you never had before’ and ‘teachers will be able to add their own content, upload it, tag it and seamlessly use it’. Accompanying this fairly direct approach is a focus on buzz words and phrases which can be expected to resonate with teachers. Recent blog posts include in their headlines: ‘supporting creativity’, ‘student-centred learning’, ‘peer mentoring’, ‘formative evaluation’, ‘continuous assessment’, ‘learning styles’, ‘scaffolding instruction’, ‘real-world examples’, ‘enrichment’ or ‘lifelong learning’.

There is an apparent openness in Knewton’s readiness to communicate with the rest of the world. The blog invites readers to start discussions and post comments. Almost no one does. But one blog post by Jose Ferreira called ‘Rebooting Learning Styles’  provoked a flurry of highly critical and well-informed responses. These remain unanswered. A similar thing happened when David Liu did a guest post at eltjam. A flurry of criticism, but no response. My interpretation of this is that Knewton are a little scared of engaging in debate and of having their marketing message hijacked.

3 EduBusiness

Here’s a sample of ways that Knewton speak to potential customers and investors:

an enormous new market of online courses that bring high margin revenue and rapid growth for institutions that start offering them early and declining numbers for those who do not.

Because Knewton is trying to disrupt the traditional industry, we have nothing to lose—we’re not cannibalising ourselves—by partnering.

Unlike other groups dabbling in adaptive learning, Knewton doesn’t force you to buy pre-fabricated products using our own content. Our platform makes it possible for anyone — publishers, instructors, app developers, and others — to build her own adaptive applications using any content she likes.

The data platform industries tend to have a winner-take-all dynamic. You take that and multiply it by a very, very high-stakes product and you get an even more winner-take-all dynamic.

4 EdUtopia

I personally find this fourth strand the most interesting. Knewton are not unique in adopting this line, but it is a sign of their ambition that they choose to do so. All of the quotes that follow are from Jose Ferreira:

We can’t improve education by curing poverty. We have to cure poverty by improving education.

Edtech is our best hope to narrow — at scale — the Achievement Gap between rich and poor. Yet, for a time, it will increase that gap. Society must push past that unfortunate moment and use tech-assisted outcome improvements as the rationale to drive spending in poor schools.

I started Knewton to do my bit to fix the world’s education system. Education is among the most important problems we face, because it’s the ultimate “gateway” problem. That is, it drives virtually every global problem that we face as a species. But there’s a flip-side: if we can fix education, then we’ll dramatically improve the other problems, too. So in fact, I started Knewton not just to help fix education but to try to fix just about everything.

What if the girl who invents the cure for ovarian cancer is growing up in a Cambodian fishing village and otherwise wouldn’t have a chance? As distribution of technology continues to improve, adaptive learning will give her and similar students countless opportunities that they otherwise wouldn’t have.

But our ultimate vision – and what really motivated me to start the company – is to solve the access problem for the human race once and for all. Only 22% of the world finishes high school; only 55% finish sixth grade. This is a preventable tragedy. Adaptive learning can give students around the world access to high-quality education they wouldn’t otherwise have.

In Part 9 of the ‘guide’ on this blog (neo-liberalism and solutionism), I suggested that the major advocates of adaptive learning form a complex network of vested neo-liberal interests. Along with adaptive learning and the digital delivery of educational content, they promote a free-market, for-profit, ‘choice’-oriented (charter schools in the US and academies in the UK) ideology. The discourses of these advocates are explored in a fascinating article by Neil Selwyn, ‘Discourses of digital ‘disruption’ in education: a critical analysis’ which can be accessed here.

Stephen Ball includes a detailed chart of this kind of network in his ‘Global Education Inc.’ (Routledge 2012). I thought it would be interesting to attempt a similar, but less ambitious, chart of my own. Sugata Mitra’s plenary talk at the IATEFL conference yesterday has generated a lot of discussion, so I thought it would be interesting to focus on him. What such charts demonstrate very clearly is that there is a very close interlinking between EdTech advocacy and a wider raft of issues on the neo-liberal wish list. Adaptive learning developments (or, for example, schools in the cloud) need to be understood in a broader context … in the same way that Mitra, Tooley, Gates et al understand these technologies.

In order to understand the chart, you will need to look at the notes below. Many more nodes could be introduced, but I have tried my best to keep things simple. All of the information here is publicly available, but I found Stephen Ball’s work especially helpful.

mitra chart


Bill Gates is the former chief executive and chairman of Microsoft, co-chair of the Bill and Melinda Gates Foundation.

James Tooley is the Director of the E.G. West Centre. He is a founder of the Educare Trust, founder and chairman of Omega Schools, president of Orient Global, chairman of Rumi School of Excellence, and a former consultant to the International Finance Corporation. He is also a member of the advisory council of the Institute of Economic Affairs and was responsible for creating the Education and Training Unit at the Institute.

Michael Barber is Pearson’s Chief Education Advisor and Chairman of Pearson’s $15 million Affordable Learning Fund. He is also an advisor on ‘deliverology’ to the International Finance Corporation.

Sugata Mitra is Professor of Educational Technology at the E.G. West Centre and he is Chief Scientist, Emeritus, at NIIT. He is best known for his “Hole in the Wall” experiment. In 2013, he won the $1 million TED Prize to develop his idea of a ‘school-in-the-cloud’.


Hiwel (Hole-in-the-Wall Education Limited) is the company behind Mitra’s “Hole in the Wall” experiment. It is a subsidiary of NIIT.

NIIT Limited is an Indian company based in Gurgaon, India that operates several for-profit higher education institutions.

Omega Schools is a privately held chain of affordable, for-profit schools based in Ghana.There are currently 38 schools educating over 20,000 students.

Orient Global is a Singapore-based investment group, which bought a $48 million stake in NIIT.

Pearson is … Pearson. Pearson’s Affordable Learning Fund was set up to invest in private companies committed to innovative approaches. Its first investment was a stake in Omega Schools.

Rumi Schools of Excellence is Orient Global’s chain of low-cost private schools in India, which aims to extend access and improve educational quality through affordable private schooling.

School-in-the-cloud is described by Mitra as’ a learning lab in India, where children can embark on intellectual adventures by engaging and connecting with information and mentoring online’. Microsoft are the key sponsors.

The E.G. West Centre of the University of Newcastle is dedicated to generating knowledge and understanding about how markets and self organising systems work in education.

The Educare Trustis a non-profit agency, formed in 2002 by Professor James Tooley of the University of Newcastle Upon Tyne, England, and other members associated with private unaided schools in India.It is advised by an international team from the University of Newcastle. It services include the running of a loan scheme for schools to improve their infrastructure and facilities.

The Institute of Economic Affairs is a right-wing free market think tank in London whose stated mission is to improve understanding of the fundamental institutions of a free society by analysing and expounding the role of markets in solving economic and social problems.

The International Finance Corporation is an international financial institution which offers investment, advisory, and asset management services to encourage private sector development in developing countries. The IFC is a member of the World Bank Group.

The Templeton Foundation is a philanthropic organization that funds inter-disciplinary research about human purpose and ultimate reality. Described by Barbara Ehrenreich as a ‘right wing venture’, it has a history of supporting the Cato Institute (publishers of Tooley’s most well-known book) , a libertarian think-tank, as well as projects at major research centers and universities that explore themes related to free market economics.

Additional connections

Barber is an old friend of Tooley’s from when both men were working in Zimbabwe in the 1990s.

Omega Schools are taking part in Sugata Mitra’s TED Prize Schools in the Cloud project.

Omega Schools use textbooks developed by Pearson.

Orient Global sponsored an Education Development fund at Newcastle University. The project leaders were Tooley and Mitra. They also sponsored the Hole-in-the-Wall experiment.

Pearson, the Pearson Foundation, Microsoft and the Gates Foundation work closely together on a wide variety of projects.

Some of Tooley’s work for the Educare Trust was funded by the Templeton Trust. Tooley was also winner of the 2006 Templeton Freedom Prize for Excellence.

The International Finance Corporation and the Gates Foundation are joint sponsors of a $60 million project to improve health in Nigeria.

The International Finance Corporation was another sponsor of the Hole-in-the-Wall experiment.

Let’s take a look at the business of adaptive learning from a publisher’s perspective. Not an ELT publisher, but someone a few rungs higher on the ladder with strategic responsibilities. You might not know a great deal about ELT. It is, after all, only one of a number of divisions you are responsible for, and not an especially profitable one at that. You will, however, know a lot about creative destruction, the process by which one industry is replaced by another. The decline and demise of printed magazines, newspapers and books, of book reviewers and traditional booksellers, and their replacement by digital products will be such a part of your professional knowledge that they hardly need to be mentioned. Graphs such as the one below from PricewaterhouseCoopers (PwC) will be terribly familiar. You will also be aware that the gales of creative destruction in publishing are blowing harder than ever before.


In fact, you probably owe your job to your ability to talk convincingly about creative destruction and how to profit from it. Whatever your particular strategy for the future might be, you will have noted the actions of others. You will have evaluated advice, such as the following, from Publishing Perspectives

  • Do not delay in taking action when there are clear signals of a decline in market value.
  • Trade your low-profit print assets (even though some may have limited digital value) for core product that has a higher likelihood of success and can be exploited digitally.
  • Look for an orderly transition from print to digital product which enables a company to reinvent itself.

You will be looking to invest in technology, and prioritizing the acquisition of technological expertise (through partnerships or the purchase of start-ups) over the development of traditional ELT products. Your company will be restructured, and possibly renamed, to facilitate the necessary changes.

You will also know that big data and analytics have already transformed other industries. And you will know that educational publishing is moving towards a winner-take-all business market, where ‘the best performers are able to capture a very large share of the rewards, and the remaining competitors are left with very little’ (Investopedia). Erik Brynjolfsson and Andrew McAfee’s new book, The Second Machine Age (New York: Norton, 2014), argues that ‘each time a market becomes more digital, winner-take-all economics become a little more compelling …Digitization creates winner-take-all markets because [there are] enormous economies of scale, giving the market leader a huge cost advantage and room to beat the price of any competitor while still making a good profit’ (pp.153-155).

the second machine age

It is in this light that we need to understand the way that companies like Pearson and Macmillan are banking everything on a digital future. Laurie Harrison’s excellent blog post at eltjam  summarises the Pearson position: ‘the world’s biggest education publisher is spending £150m on a total restructure which involves an immediate move to digital learning, a focus on emerging markets, and a transformation from publisher to education services provider. If the English language learning market is worth $4billion a year, then Pearson still only have a very small chunk of it. And if you’re a company as successful and ambitious as Pearson, that just isn’t good enough – so a change of direction is needed. In order to deliver this change, the company have recently announced their new senior management team.’

Adaptive learning fits the new business paradigm perfectly. If the hype is to be believed, adaptive learning will be a game-changer. ‘The shifting of education from analog to digital is a one-time event in the history of the human race. At scale, it will have as big an effect on the world as indoor plumbing or electricity,’ writes Jose Ferreira of Knewton. ‘True disruption,’ he says elsewhere, ‘happens when entrepreneurs aim big and go after a giant problem, a problem that, if solved, would usher in an era of large-scale transformation across industries and nations. … Education is the last of the information industries to move online,’ he goes on. ‘When it breaks, it breaks fast. And that’s going to happen in the next five years. All the education content will go online in the next 10 years. And textbooks will go away. … Ultimately, all learning materials will be digital and they will all be adaptive.’

Ferreira clearly knows all about creative disruption. He also knows about winner-take-all markets. ‘The question is who is going to power [the] platform,’ he writes. ‘It’s probably going to be one or two companies’. He states his ambition for Knewton very clearly: ‘Knewton’s goal is to be like Amazon Web Services for education’. ‘It’s pretty clear to us,’ he writes, ‘that there’s going to be one dominant data platform for education, the way there’s one dominant data platform for search, social media, etailing. But in education, it’s going to be even more winner-take-all; there will be a number of companies that make up the platform, like Wintel. People might make a perverse choice to use Bing for search because they don’t like Google. But no one’s going to make the choice to subject their kid to the second-best adaptive learning platform, if that means there’s a 23% structural disadvantage. The data platform industries tend to have a winner-take-all dynamic. You take that and multiply it by a very, very high-stakes product and you get an even more winner-take-all dynamic.’

What is at stake in this winner-take-all market? Over to Jose Ferreira one more time: ‘The industry is massive. It’s so massive that virtually nobody I’ve met truly grasps how big it is. It’s beyond their frame of reference. The total amount of money (both public and private) spent annually exceeds all spending, both online and offline, of every other information industry combined: that is, all media, entertainment, games, news, software, Internet and mobile media, e-tailing, etc.’

But, still, a few questions continue to nag away at me. If all of this is so certain, why does Jose Ferreira feel the need to talk about it so much? If all of this is so certain, why don’t all the ELT publishers jump on the bandwagon? What sort of track record does economic forecasting have, anyway?