Posts Tagged ‘coursebooks’

by Philip Kerr & Andrew Wickham

from IATEFL 2016 Birmingham Conference Selections (ed. Tania Pattison) Faversham, Kent: IATEFL pp. 75 – 78

ELT publishing, international language testing and private language schools are all industries: products are produced, bought and sold for profit. English language teaching (ELT) is not. It is an umbrella term that is used to describe a range of activities, some of which are industries, and some of which (such as English teaching in high schools around the world) might better be described as public services. ELT, like education more generally, is, nevertheless, often referred to as an ‘industry’.

Education in a neoliberal world

The framing of ELT as an industry is both a reflection of how we understand the term and a force that shapes our understanding. Associated with the idea of ‘industry’ is a constellation of other ideas and words (such as efficacy, productivity, privatization, marketization, consumerization, digitalization and globalization) which become a part of ELT once it is framed as an industry. Repeated often enough, ‘ELT as an industry’ can become a metaphor that we think and live by. Those activities that fall under the ELT umbrella, but which are not industries, become associated with the desirability of industrial practices through such discourse.

The shift from education, seen as a public service, to educational managerialism (where education is seen in industrial terms with a focus on efficiency, free market competition, privatization and a view of students as customers) can be traced to the 1980s and 1990s (Gewirtz, 2001). In 1999, under pressure from developed economies, the General Agreement on Trade in Services (GATS) transformed education into a commodity that could be traded like any other in the marketplace (Robertson, 2006). The global industrialisation and privatization of education continues to be promoted by transnational organisations (such as the World Bank and the OECD), well-funded free-market think-tanks (such as the Cato Institute), philanthro-capitalist foundations (such as the Gates Foundation) and educational businesses (such as Pearson) (Ball, 2012).

Efficacy and learning outcomes

Managerialist approaches to education require educational products and services to be measured and compared. In ELT, the most visible manifestation of this requirement is the current ubiquity of learning outcomes. Contemporary coursebooks are full of ‘can-do’ statements, although these are not necessarily of any value to anyone. Examples from one unit of one best-selling course include ‘Now I can understand advice people give about hotels’ and ‘Now I can read an article about unique hotels’ (McCarthy et al. 2014: 74). However, in a world where accountability is paramount, they are deemed indispensable. The problem from a pedagogical perspective is that teaching input does not necessarily equate with learning uptake. Indeed, there is no reason why it should.

Drawing on the Common European Framework of Reference for Languages (CEFR) for inspiration, new performance scales have emerged in recent years. These include the Cambridge English Scale and the Pearson Global Scale of English. Moving away from the broad six categories of the CEFR, such scales permit finer-grained measurement and we now see individual vocabulary and grammar items tagged to levels. Whilst such initiatives undoubtedly support measurements of efficacy, the problem from a pedagogical perspective is that they assume that language learning is linear and incremental, as opposed to complex and jagged.

Given the importance accorded to the measurement of language learning (or what might pass for language learning), it is unsurprising that attention is shifting towards the measurement of what is probably the most important factor impacting on learning: the teaching. Teacher competency scales have been developed by Cambridge Assessment, the British Council and EAQUALS (Evaluation and Accreditation of Quality Language Services), among others.

The backwash effects of the deployment of such scales are yet to be fully experienced, but the likely increase in the perception of both language learning and teacher learning as the synthesis of granularised ‘bits of knowledge’ is cause for concern.

Digital technology

Digital technology may offer advantages to both English language teachers and learners, but its rapid growth in language learning is the result, primarily but not exclusively, of the way it has been promoted by those who stand to gain financially. In education, generally, and in English language teaching, more specifically, advocacy of the privatization of education is always accompanied by advocacy of digitalization. The global market for digital English language learning products was reported to be $2.8 billion in 2015 and is predicted to reach $3.8 billion by 2020 (Ambient Insight, 2016).

In tandem with the increased interest in measuring learning outcomes, there is fierce competition in the market for high-stakes examinations, and these are increasingly digitally delivered and marked. In the face of this competition and in a climate of digital disruption, companies like Pearson and Cambridge English are developing business models of vertical integration where they can provide and sell everything from placement testing, to courseware (either print or delivered through an LMS), teaching, assessment and teacher training. Huge investments are being made in pursuit of such models. Pearson, for example, recently bought GlobalEnglish, Wall Street English, and set up a partnership with Busuu, thus covering all aspects of language learning from resources provision and publishing to off- and online training delivery.

As regards assessment, the most recent adult coursebook from Cambridge University Press (in collaboration with Cambridge English Language Assessment), ‘Empower’ (Doff, et. Al, 2015) sells itself on a combination of course material with integrated, validated assessment.

Besides its potential for scalability (and therefore greater profit margins), the appeal (to some) of platform-delivered English language instruction is that it facilitates assessment that is much finer-grained and actionable in real time. Digitization and testing go hand in hand.

Few English language teachers have been unaffected by the move towards digital. In the state sectors, large-scale digitization initiatives (such as the distribution of laptops for educational purposes, the installation of interactive whiteboards, the move towards blended models of instruction or the move away from printed coursebooks) are becoming commonplace. In the private sectors, online (or partially online) language schools are taking market share from the traditional bricks-and-mortar institutions.

These changes have entailed modifications to the skill-sets that teachers need to have. Two announcements at this conference reflect this shift. First of all, Cambridge English launched their ‘Digital Framework for Teachers’, a matrix of six broad competency areas organised into four levels of proficiency. Secondly, Aqueduto, the Association for Quality Education and Training Online, was launched, setting itself up as an accreditation body for online or blended teacher training courses.

Teachers’ pay and conditions

In the United States, and likely soon in the UK, the move towards privatization is accompanied by an overt attack on teachers’ unions, rights, pay and conditions (Selwyn, 2014). As English language teaching in both public and private sectors is commodified and marketized it is no surprise to find that the drive to bring down costs has a negative impact on teachers worldwide. Gwynt (2015), for example, catalogues cuts in funding, large-scale redundancies, a narrowing of the curriculum, intensified workloads (including the need to comply with ‘quality control measures’), the deskilling of teachers, dilapidated buildings, minimal resources and low morale in an ESOL department in one British further education college. In France, a large-scale study by Wickham, Cagnol, Wright and Oldmeadow (Linguaid, 2015; Wright, 2016) found that EFL teachers in the very competitive private sector typically had multiple employers, limited or no job security, limited sick pay and holiday pay, very little training and low hourly rates that were deteriorating. One of the principle drivers of the pressure on salaries is the rise of online training delivery through Skype and other online platforms, using offshore teachers in low-cost countries such as the Philippines. This type of training represents 15% in value and up to 25% in volume of all language training in the French corporate sector and is developing fast in emerging countries. These examples are illustrative of a broad global trend.

Implications

Given the current climate, teachers will benefit from closer networking with fellow professionals in order, not least, to be aware of the rapidly changing landscape. It is likely that they will need to develop and extend their skill sets (especially their online skills and visibility and their specialised knowledge), to differentiate themselves from competitors and to be able to demonstrate that they are in tune with current demands. More generally, it is important to recognise that current trends have yet to run their full course. Conditions for teachers are likely to deteriorate further before they improve. More than ever before, teachers who want to have any kind of influence on the way that marketization and industrialization are shaping their working lives will need to do so collectively.

References

Ambient Insight. 2016. The 2015-2020 Worldwide Digital English Language Learning Market. http://www.ambientinsight.com/Resources/Documents/AmbientInsight_2015-2020_Worldwide_Digital_English_Market_Sample.pdf

Ball, S. J. 2012. Global Education Inc. Abingdon, Oxon.: Routledge

Doff, A., Thaine, C., Puchta, H., Stranks, J. and P. Lewis-Jones 2015. Empower. Cambridge: Cambridge University Press

Gewirtz, S. 2001. The Managerial School: Post-welfarism and Social Justice in Education. Abingdon, Oxon.: Routledge

Gwynt, W. 2015. ‘The effects of policy changes on ESOL’. Language Issues 26 / 2: 58 – 60

McCarthy, M., McCarten, J. and H. Sandiford 2014. Touchstone 2 Student’s Book Second Edition. Cambridge: Cambridge University Press

Linguaid, 2015. Le Marché de la Formation Langues à l’Heure de la Mondialisation. Guildford: Linguaid

Robertson, S. L. 2006. ‘Globalisation, GATS and trading in education services.’ published by the Centre for Globalisation, Education and Societies, University of Bristol, Bristol BS8 1JA, UK at http://www.bris.ac.uk/education/people/academicStaff/edslr/publications/04slr

Selwyn, N. 2014. Distrusting Educational Technology. New York: Routledge

Wright, R. 2016. ‘My teacher is rich … or not!’ English Teaching Professional 103: 54 – 56

 

 

Advertisements

All aboard …

The point of adaptive learning is that it can personalize learning. When we talk about personalization, mention of learning styles is rarely far away. Jose Ferreira of Knewton (but now ex-CEO Knewton) made his case for learning styles in a blog post that generated a superb and, for Ferreira, embarrassing  discussion in the comments that were subsequently deleted by Knewton. fluentu_learning_stylesFluentU (which I reviewed here) clearly approves of learning styles, or at least sees them as a useful way to market their product, even though it is unclear how their product caters to different styles. Busuu claims to be ‘personalised to fit your style of learning’. Voxy, Inc. (according to their company overview) ‘operates a language learning platform that creates custom curricula for English language learners based on their interests, routines, goals, and learning styles’. Bliu Bliu (which I reviewed here) recommended, in a recent blog post, that learners should ‘find out their language learner type and use it to their advantage’ and suggests, as a starter, trying out ‘Bliu Bliu, where pretty much any learner can find what suits them best’. Memrise ‘uses clever science to adapt to your personal learning style’.  Duolingo’s learning tree ‘effectively rearranges itself to suit individual learning styles’ according to founder, Louis Von Ahn. This list could go on and on.

Learning styles are thriving in ELT coursebooks, too. Here are just three recent examples for learners of various ages. Today! by Todd, D. & Thompson, T. (Pearson, 2014) ‘shapes learning around individual students with graded difficulty practice for mixed-ability classes’ and ‘makes testing mixed-ability classes easier with tests that you can personalise to students’ abilities’.today

Move  it! by Barraclough, C., Beddall, F., Stannett, K., Wildman, J. (Pearson, 2015) offers ‘personalized pathways [which] allow students to optimize their learning outcomes’ and a ‘complete assessment package to monitor students’ learning process’. pearson_move_it

Open Mind Elementary (A2) 2nd edition by Rogers, M., Taylor-Knowles, J. & Taylor-Knowles, S. (Macmillan, 2014) has a whole page devoted to learning styles in the ‘Life Skills’ strand of the course. The scope and sequence describes it in the following terms: ‘Thinking about what you like to do to find your learning style and improve how you learn English’. Here’s the relevant section:macmillan_coursebook

rosenber-learning-stylesMethodology books offer more tips for ways that teachers can cater to different learning styles. Recent examples include Patrycja Kamińska’s  Learning Styles and Second Language Education (Cambridge Scholars, 2014), Tammy Gregersen & Peter D. MacIntyre’s Capitalizing on Language Learners’ Individuality (Multilingual Matters, 2014) and Marjorie Rosenberg’s Spotlight on Learning Styles (Delta Publishing, 2013). Teacher magazines show a continuing interest  in the topic. Humanising Language Teaching and English Teaching Professional are particularly keen. The British Council offers courses about learning styles and its Teaching English website has many articles and lesson plans on the subject (my favourite explains that your students will be more successful if you match your teaching style to their learning styles), as do the websites of all the major publishers. Most ELT conferences will also offer something on the topic.oup_learning_styles

How about language teaching qualifications and frameworks? The Cambridge English Teaching Framework contains a component entitled ‘Understanding learners’ and this specifies as the first part of the component a knowledge of concepts such as learning styles (e.g., visual, auditory, kinaesthetic), multiple intelligences, learning strategies, special needs, affect. Unsurprisingly, the Cambridge CELTA qualification requires successful candidates to demonstrate an awareness of the different learning styles and preferences that adults bring to learning English. The Cambridge DELTA requires successful candidates to accommodate learners according to their different abilities, motivations, and learning styles. The Eaquals Framework for Language Teacher Training and Development requires teachers at Development Phase 2 t0 have the skill of determining and anticipating learners’ language learning needs and learning styles at a range of levels, selecting appropriate ways of finding out about these.

Outside of ELT, learning styles also continue to thrive. Phil Newton (2015 ‘The learning styles myth is thriving in higher education’ Frontiers in Psychology 6: 1908) carried out a survey of educational publications  (higher education) between 2013 and 2016, and found that an overwhelming majority (89%) implicitly or directly endorse the use of learning styles. He also cites research showing that 93% of UK schoolteachers believe that ‘individuals learn better when they receive information in their preferred Learning Style’, with similar figures in other countries. 72% of Higher Education institutions in the US teach ‘learning style theory’ as part of faculty development for online teachers. Advocates of learning styles in English language teaching are not alone.

But, unfortunately, …

In case you weren’t aware of it, there is a rather big problem with learning styles. There is a huge amount of research  which suggests that learning styles (and, in particular, teaching attempts to cater to learning styles) need to be approached with extreme scepticism. Much of this research was published long before the blog posts, advertising copy, books and teaching frameworks (listed above) were written.  What does this research have to tell us?

The first problem concerns learning styles taxonomies. There are three issues here: many people do not fit one particular style, the information used to assign people to styles is often inadequate, and there are so many different styles that it becomes cumbersome to link particular learners to particular styles (Kirschner, P. A. & van Merriënboer, J. J. G. 2013. ‘Do Learners Really Know Best? Urban Legends in Education’ Educational Psychologist, 48 / 3, 169-183). To summarise, given the lack of clarity as to which learning styles actually exist, it may be ‘neither viable nor justified’ for learning styles to form the basis of lesson planning (Hall, G. 2011. Exploring English Language Teaching. Abingdon, Oxon.: Routledge p.140). More detailed information about these issues can be found in the following sources:

Coffield, F., Moseley, D., Hall, E. & Ecclestone, K. 2004. Learning styles and pedagogy in post-16 learning: a systematic and critical review. London: Learning and Skills Research Centre

Dembo, M. H. & Howard, K. 2007. Advice about the use of learning styles: a major myth in education. Journal of College Reading & Learning 37 / 2: 101 – 109

Kirschner, P. A. 2017. Stop propagating the learning styles myth. Computers & Education 106: 166 – 171

Pashler, H., McDaniel, M., Rohrer, D. & Bjork, E. 2008. Learning styles concepts and evidence. Psychological Science in the Public Interest 9 / 3: 105 – 119

Riener, C. & Willingham, D. 2010. The myth of learning styles. Change – The Magazine of Higher Learning

The second problem concerns what Pashler et al refer to as the ‘meshing hypothesis’: the idea that instructional interventions can be effectively tailored to match particular learning styles. Pashler et al concluded that the available taxonomies of student types do not offer any valid help in deciding what kind of instruction to offer each individual. Even in 2008, their finding was not new. Back in 1978, a review of 15 studies that looked at attempts to match learning styles to approaches to first language reading instruction, concluded that modality preference ‘has not been found to interact significantly with the method of teaching’ (Tarver, Sara & M. M. Dawson. 1978. Modality preference and the teaching of reading. Journal of Learning Disabilities 11: 17 – 29). The following year, two other researchers concluded that [the assumption that one can improve instruction by matching materials to children’s modality strengths] appears to lack even minimal empirical support. (Arter, J.A. & Joseph A. Jenkins 1979 ‘Differential diagnosis-prescriptive teaching: A critical appraisal’ Review of Educational Research 49: 517-555). Fast forward 20 years to 1999, and Stahl (Different strokes for different folks?’ American Educator Fall 1999 pp. 1 – 5) was writing the reason researchers roll their eyes at learning styles is the utter failure to find that assessing children’s learning styles and matching to instructional methods has any effect on learning. The area with the most research has been the global and analytic styles […]. Over the past 30 years, the names of these styles have changed – from ‘visual’ to ‘global’ and from ‘auditory’ to ‘analytic’ – but the research results have not changed. For a recent evaluation of the practical applications of learning styles, have a look at Rogowsky, B. A., Calhoun, B. M. & Tallal, P. 2015. ‘Matching Learning Style to Instructional Method: Effects on Comprehension’ Journal of Educational Psychology 107 / 1: 64 – 78. Even David Kolb, the Big Daddy of learning styles, now concedes that there is no strong evidence that teachers should tailor their instruction to their student’s particular learning styles (reported in Glenn, D. 2009. ‘Matching teaching style to learning style may not help students’ The Chronicle of Higher Education). To summarise, the meshing hypothesis is entirely unsupported in the scientific literature. It is a myth (Howard-Jones, P. A. 2014. ‘Neuroscience and education: myths and messages’ Nature Reviews Neuroscience).

This brings me back to the blog posts, advertising blurb, coursebooks, methodology books and so on that continue to tout learning styles. The writers of these texts typically do not acknowledge that there’s a problem of any kind. Are they unaware of the research? Or are they aware of it, but choose not to acknowledge it? I suspect that the former is often the case with the app developers. But if the latter is the case, what  might those reasons be? In the case of teacher training specifications, the reason is probably practical. Changing a syllabus is an expensive and time-consuming operation. But in the case of some of the ELT writers, I suspect that they hang on in there because they so much want to believe.

As Newton (2015: 2) notes, intuitively, there is much that is attractive about the concept of Learning Styles. People are obviously different and Learning Styles appear to offer educators a way to accommodate individual learner differences.  Pashler et al (2009:107) add that another related factor that may play a role in the popularity of the learning-styles approach has to do with responsibility. If a person or a person’s child is not succeeding or excelling in school, it may be more comfortable for the person to think that the educational system, not the person or the child himself or herself, is responsible. That is, rather than attribute one’s lack of success to any lack of ability or effort on one’s part, it may be more appealing to think that the fault lies with instruction being inadequately tailored to one’s learning style. In that respect, there may be linkages to the self-esteem movement that became so influential, internationally, starting in the 1970s. There is no reason to doubt that many of those who espouse learning styles have good intentions.

No one, I think, seriously questions whether learners might not benefit from a wide variety of input styles and learning tasks. People are obviously different. MacIntyre et al (MacIntyre, P.D., Gregersen, T. & Clément, R. 2016. ‘Individual Differences’ in Hall, G. (ed.) The Routledge Handbook of English Language Teaching. Abingdon, Oxon: Routledge, pp.310 – 323, p.319) suggest that teachers might consider instructional methods that allow them to capitalise on both variety and choice and also help learners find ways to do this for themselves inside and outside the classroom. Jill Hadfield (2006. ‘Teacher Education and Trainee Learning Style’ RELC Journal 37 / 3: 369 – 388) recommends that we design our learning tasks across the range of learning styles so that our trainees can move across the spectrum, experiencing both the comfort of matching and the challenge produced by mismatching. But this is not the same thing as claiming that identification of a particular learning style can lead to instructional decisions. The value of books like Rosenberg’s Spotlight on Learning Styles lies in the wide range of practical suggestions for varying teaching styles and tasks. They contain ideas of educational value: it is unfortunate that the theoretical background is so thin.

In ELT things are, perhaps, beginning to change. Russ Mayne’s blog post Learning styles: facts and fictions in 2012 got a few heads nodding, and he followed this up 2 years later with a presentation at IATEFL looking at various aspects of ELT, including learning styles, which have little or no scientific credibility. Carol Lethaby and Patricia Harries gave a talk at IATEFL 2016, Changing the way we approach learning styles in teacher education, which was also much discussed and shared online. They also had an article in ELT Journal called Learning styles and teacher training: are we perpetuating neuromyths? (2016 ELTJ 70 / 1: 16 – 27). Even Pearson, in a blog post of November 2016, (Mythbusters: A review of research on learning styles) acknowledges that there is a shocking lack of evidence to support the core learning styles claim that customizing instruction based on students’ preferred learning styles produces better learning than effective universal instruction, concluding that  it is impossible to recommend learning styles as an effective strategy for improving learning outcomes.

 

 

I have been putting in a lot of time studying German vocabulary with Memrise lately, but this is not a review of the Memrise app. For that, I recommend you read Marek Kiczkowiak’s second post on this app. Like me, he’s largely positive, although I am less enthusiastic about Memrise’s USP, the use of mnemonics. It’s not that mnemonics don’t work – there’s a lot of evidence that they do: it’s just that there is little or no evidence that they’re worth the investment of time.

Time … as I say, I have been putting in the hours. Every day, for over a month, averaging a couple of hours a day, it’s enough to get me very near the top of the leader board (which I keep a very close eye on) and it means that I am doing more work than 99% of other users. And, yes, my German is improving.

Putting in the time is the sine qua non of any language learning and a well-designed app must motivate users to do this. Relevant content will be crucial, as will satisfactory design, both visual and interactive. But here I’d like to focus on the two other key elements: task design / variety and gamification.

Memrise offers a limited range of task types: presentation cards (with word, phrase or sentence with translation and audio recording), multiple choice (target item with four choices), unscrambling letters or words, and dictation (see below).

Screenshot_2016-05-24-08-10-42Screenshot_2016-05-24-08-10-57Screenshot_2016-05-24-08-11-24Screenshot_2016-05-24-08-11-45Screenshot_2016-05-24-08-12-51Screenshot_2016-05-24-08-13-44

As Marek writes, it does get a bit repetitive after a while (although less so than thumbing through a pack of cardboard flashcards). The real problem, though, is that there are only so many things an app designer can do with standard flashcards, if they are to contribute to learning. True, there could be a few more game-like tasks (as with Quizlet), races against the clock as you pop word balloons or something of the sort, but, while these might, just might, help with motivation, these games rarely, if ever, contribute much to learning.

What’s more, you’ll get fed up with the games sooner or later if you’re putting in serious study hours. Even if Memrise were to double the number of activity types, I’d have got bored with them by now, in the same way I got bored with the Quizlet games. Bear in mind, too, that I’ve only done a month: I have at least another two months to go before I finish the level I’m working on. There’s another issue with ‘fun’ activities / games which I’ll come on to later.

The options for task variety in vocabulary / memory apps are therefore limited. Let’s look at gamification. Memrise has leader boards (weekly, monthly, ‘all time’), streak badges, daily goals, email reminders and (in the laptop and premium versions) a variety of graphs that allow you to analyse your study patterns. Your degree of mastery of learning items is represented by a growing flower that grows leaves, flowers and withers. None of this is especially original or different from similar apps.

Screenshot_2016-05-24-19-17-14The trouble with all of this is that it can only work for a certain time and, for some people, never. There’s always going to be someone like me who can put in a couple of hours a day more than you can. Or someone, in my case, like ‘Nguyenduyha’, who must be doing about four hours a day, and who, I know, is out of my league. I can’t compete and the realisation slowly dawns that my life would be immeasurably sadder if I tried to.

Having said that, I have tried to compete and the way to do so is by putting in the time on the ‘speed review’. This is the closest that Memrise comes to a game. One hundred items are flashed up with four multiple choices and these are against the clock. The quicker you are, the more points you get, and if you’re too slow, or you make a mistake, you lose a life. That’s how you gain lots of points with Memrise. The problem is that, at best, this task only promotes receptive knowledge of the items, which is not what I need by this stage. At worst, it serves no useful learning function at all because I have learnt ways of doing this well which do not really involve me processing meaning at all. As Marek says in his post (in reference to Quizlet), ‘I had the feeling that sometimes I was paying more attention to ‘winning’ the game and scoring points, rather than to the words on the screen.’ In my case, it is not just a feeling: it’s an absolute certainty.

desktop_dashboard

Sadly, the gamification is working against me. The more time I spend on the U-Bahn doing Memrise, the less time I spend reading the free German-language newspapers, the less time I spend eavesdropping on conversations. Two hours a day is all I have time for for my German study, and Memrise is eating it all up. I know that there are other, and better, ways of learning. In order to do what I know I should be doing, I need to ignore the gamification. For those, more reasonable, students, who can regularly do their fifteen minutes a day, day in – day out, the points and leader boards serve no real function at all.

Cheating at gamification, or gaming the system, is common in app-land. A few years ago, Memrise had to take down their leader board when they realised that cheating was taking place. There’s an inexorable logic to this: gamification is an attempt to motivate by rewarding through points, rather than the reward coming from the learning experience. The logic of the game overtakes itself. Is ‘Nguyenduyha’ cheating, or do they simply have nothing else to do all day? Am I cheating by finding time to do pointless ‘speed reviews’ that earn me lots of points?

For users like myself, then, gamification design needs to be a delicate balancing act. For others, it may be largely an irrelevance. I’ve been working recently on a general model of vocabulary app design that looks at two very different kinds of user. On the one hand, there are the self-motivated learners like myself or the millions of other who have chosen to use self-study apps. On the other, there are the millions of students in schools and colleges, studying English among other subjects, some of whom are now being told to use the vocabulary apps that are beginning to appear packaged with their coursebooks (or other learning material). We’ve never found entirely satisfactory ways of making these students do their homework, and the fact that this homework is now digital will change nothing (except, perhaps, in the very, very short term). The incorporation of games and gamification is unlikely to change much either: there will always be something more interesting and motivating (and unconnected with language learning) elsewhere.

Teachers and college principals may like the idea of gamification (without having really experienced it themselves) for their students. But more important for most of them is likely to be the teacher dashboard: the means by which they can check that their students are putting the time in. Likewise, they will see the utility of automated email reminders that a student is not working hard enough to meet their learning objectives, more and more regular tests that contribute to overall course evaluation, comparisons with college, regional or national benchmarks. Technology won’t solve the motivation issue, but it does offer efficient means of control.

If you’re going to teach vocabulary, you need to organise it in some way. Almost invariably, this organisation is topical, with words grouped into what are called semantic sets. In coursebooks, the example below (from Rogers, M., Taylore-Knowles, J. & S. Taylor-Knowles. 2010. Open Mind Level 1. London: Macmillan, p.68) is fairly typical.

open mind

Coursebooks are almost always organised in a topical way. The example above comes in a unit (of 10 pages), entitled ‘You have talent!’, which contains two main vocabulary sections. It’s unsurprising to find a section called ‘personality adjectives’ in such a unit. What’s more, such an approach lends itself to the requisite, but largely, spurious ‘can-do’ statement in the self-evaluation section: I can talk about people’s positive qualities. We must have clearly identifiable learning outcomes, after all.

There is, undeniably, a certain intuitive logic in this approach. An alternative might entail a radical overhaul of coursebook architecture – this might not be such a bad thing, but might not go down too well in the markets. How else, after all, could the vocabulary strand of the syllabus be organised?

Well, there are a number of ways in which a vocabulary syllabus could be organised. Including the standard approach described above, here are four possibilities:

1 semantic sets (e.g. bee, butterfly, fly, mosquito, etc.)

2 thematic sets (e.g. ‘pets’: cat, hate, flea, feed, scratch, etc.)

3 unrelated sets

4 sets determined by a group of words’ occurrence in a particular text

Before reading further, you might like to guess what research has to say about the relative effectiveness of these four approaches.

The answer depends, to some extent, on the level of the learner. For advanced learners, it appears to make no, or little, difference (Al-Jabri, 2005, cited by Ellis & Shintani, 2014: 106). But, for the vast majority of English language learners (i.e. those at or below B2 level), the research is clear: the most effective way of organising vocabulary items to be learnt is by grouping them into thematic sets (2) or by mixing words together in a semantically unrelated way (3) – not by teaching sets like ‘personality adjectives’. It is surprising how surprising this finding is to so many teachers and materials writers. It goes back at least to 1988 and West’s article on ‘Catenizing’ in ELTJ, which argued that semantic grouping made little sense from a psycho-linguistic perspective. Since then, a large amount of research has taken place. This is succinctly summarised by Paul Nation (2013: 128) in the following terms: Avoid interference from related words. Words which are similar in form (Laufer, 1989) or meaning (Higa, 1963; Nation, 2000; Tinkham, 1993; Tinkham, 1997; Waring, 1997) are more difficult to learn together than they are to learn separately. For anyone who is interested, the most up-to-date review of this research that I can find is in chapter 11 of Barcroft (2105).

The message is clear. So clear that you have to wonder how it is not getting through to materials designers. Perhaps, coursebooks are different. They regularly eschew research findings for commercial reasons. But vocabulary apps? There is rarely, if ever, any pressure on the content-creation side of vocabulary apps (except those that are tied to coursebooks) to follow the popular misconceptions that characterise so many coursebooks. It wouldn’t be too hard to organise vocabulary into thematic sets (like, for example, the approach in the A2 level of Memrise German that I’m currently using). Is it simply because the developers of so many vocabulary apps just don’t know much about language learning?

References

Barcroft, J. 2015. Lexical Input Processing and Vocabulary Learning. Amsterdam: John Benjamins

Nation, I. S. P. 2013. Learning Vocabulary in Another Language 2nd edition. Cambridge: Cambridge University Press

Ellis, R. & N. Shintani, N. 2014. Exploring Language Pedagogy through Second Language Acquisition Research. Abingdon, Oxon: Routledge

West, M. 1988. ‘Catenizing’ English Language Teaching Journal 6: 147 – 151

Back in December 2013, in an interview with eltjam , David Liu, COO of the adaptive learning company, Knewton, described how his company’s data analysis could help ELT publishers ‘create more effective learning materials’. He focused on what he calls ‘content efficacy[i]’ (he uses the word ‘efficacy’ five times in the interview), a term which he explains below:

A good example is when we look at the knowledge graph of our partners, which is a map of how concepts relate to other concepts and prerequisites within their product. There may be two or three prerequisites identified in a knowledge graph that a student needs to learn in order to understand a next concept. And when we have hundreds of thousands of students progressing through a course, we begin to understand the efficacy of those said prerequisites, which quite frankly were made by an author or set of authors. In most cases they’re quite good because these authors are actually good in what they do. But in a lot of cases we may find that one of those prerequisites actually is not necessary, and not proven to be useful in achieving true learning or understanding of the current concept that you’re trying to learn. This is interesting information that can be brought back to the publisher as they do revisions, as they actually begin to look at the content as a whole.

One commenter on the post, Tom Ewens, found the idea interesting. It could, potentially, he wrote, give us new insights into how languages are learned much in the same way as how corpora have given us new insights into how language is used. Did Knewton have any plans to disseminate the information publicly, he asked. His question remains unanswered.

At the time, Knewton had just raised $51 million (bringing their total venture capital funding to over $105 million). Now, 16 months later, Knewton have launched their new product, which they are calling Knewton Content Insights. They describe it as the world’s first and only web-based engine to automatically extract statistics comparing the relative quality of content items — enabling us to infer more information about student proficiency and content performance than ever before possible.

The software analyses particular exercises within the learning content (and particular items within them). It measures the relative difficulty of individual items by, for example, analysing how often a question is answered incorrectly and how many tries it takes each student to answer correctly. It also looks at what they call ‘exhaustion’ – how much content students are using in a particular area – and whether they run out of content. The software can correlate difficulty with exhaustion. Lastly, it analyses what they call ‘assessment quality’ – how well  individual questions assess a student’s understanding of a topic.

Knewton’s approach is premised on the idea that learning (in this case language learning) can be broken down into knowledge graphs, in which the information that needs to be learned can be arranged and presented hierarchically. The ‘granular’ concepts are then ‘delivered’ to the learner, and Knewton’s software can optimise the delivery. The first problem, as I explored in a previous post, is that language is a messy, complex system: it doesn’t lend itself terribly well to granularisation. The second problem is that language learning does not proceed in a linear, hierarchical way: it is also messy and complex. The third is that ‘language learning content’ cannot simply be delivered: a process of mediation is unavoidable. Are the people at Knewton unaware of the extensive literature devoted to the differences between synthetic and analytic syllabuses, of the differences between product-oriented and process-oriented approaches? It would seem so.

Knewton’s ‘Content Insights’ can only, at best, provide some sort of insight into the ‘language knowledge’ part of any learning content. It can say nothing about the work that learners do to practise language skills, since these are not susceptible to granularisation: you simply can’t take a piece of material that focuses on reading or listening and analyse its ‘content efficacy at the concept level’. Because of this, I predicted (in the post about Knowledge Graphs) that the likely focus of Knewton’s analytics would be discrete item, sentence-level grammar (typically tenses). It turns out that I was right.

Knewton illustrate their new product with screen shots such as those below.

Content-Insight-Assessment-1

 

 

 

 

 

Content-Insight-Exhaustion-1

 

 

 

 

 

 

 

They give a specific example of the sort of questions their software can answer. It is: do students generally find the present simple tense easier to understand than the present perfect tense? Doh!

It may be the case that Knewton Content Insights might optimise the presentation of this kind of grammar, but optimisation of this presentation and practice is highly unlikely to have any impact on the rate of language acquisition. Students are typically required to study the present perfect at every level from ‘elementary’ upwards. They have to do this, not because the presentation in, say, Headway, is not optimised. What they need is to spend a significantly greater proportion of their time on ‘language use’ and less on ‘language knowledge’. This is not just my personal view: it has been extensively researched, and I am unaware of any dissenting voices.

The number-crunching in Knewton Content Insights is unlikely, therefore, to lead to any actionable insights. It is, however, very likely to lead (as writer colleagues at Pearson and other publishers are finding out) to an obsession with measuring the ‘efficacy’ of material which, quite simply, cannot meaningfully be measured in this way. It is likely to distract from much more pressing issues, notably the question of how we can move further and faster away from peddling sentence-level, discrete-item grammar.

In the long run, it is reasonable to predict that the attempt to optimise the delivery of language knowledge will come to be seen as an attempt to tackle the wrong question. It will make no significant difference to language learners and language learning. In the short term, how much time and money will be wasted?

[i] ‘Efficacy’ is the buzzword around which Pearson has built its materials creation strategy, a strategy which was launched around the same time as this interview. Pearson is a major investor in Knewton.

‘Sticky’ – as in ‘sticky learning’ or ‘sticky content’ (as opposed to ‘sticky fingers’ or a ‘sticky problem’) – is itself fast becoming a sticky word. If you check out ‘sticky learning’ on Google Trends, you’ll see that it suddenly spiked in September 2011, following the slightly earlier appearance of ‘sticky content’. The historical rise in this use of the word coincides with the exponential growth in the number of references to ‘big data’.

I am often asked if adaptive learning really will take off as a big thing in language learning. Will adaptivity itself be a sticky idea? When the question is asked, people mean the big data variety of adaptive learning, rather than the much more limited adaptivity of spaced repetition algorithms, which, I think, is firmly here and here to stay. I can’t answer the question with any confidence, but I recently came across a book which suggests a useful way of approaching the question.

41u+NEyWjnL._SY344_BO1,204,203,200_‘From the Ivory Tower to the Schoolhouse’ by Jack Schneider (Harvard Education Press, 2014) investigates the reasons why promising ideas from education research fail to get taken up by practitioners, and why other, less-than-promising ideas, from a research or theoretical perspective, become sticky quite quickly. As an example of the former, Schneider considers Robert Sternberg’s ‘Triarchic Theory’. As an example of the latter, he devotes a chapter to Howard Gardner’s ‘Multiple Intelligences Theory’.

Schneider argues that educational ideas need to possess four key attributes in order for teachers to sit up, take notice and adopt them.

  1. perceived significance: the idea must answer a question central to the profession – offering a big-picture understanding rather than merely one small piece of a larger puzzle
  2. philosophical compatibility: the idea must clearly jibe with closely held [teacher] beliefs like the idea that teachers are professionals, or that all children can learn
  3. occupational realism: it must be possible for the idea to be put easily into immediate use
  4. transportability: the idea needs to find its practical expression in a form that teachers can access and use at the time that they need it – it needs to have a simple core that can travel through pre-service coursework, professional development seminars, independent study and peer networks

To what extent does big data adaptive learning possess these attributes? It certainly comes up trumps with respect to perceived significance. The big question that it attempts to answer is the question of how we can make language learning personalized / differentiated / individualised. As its advocates never cease to remind us, adaptive learning holds out the promise of moving away from a one-size-fits-all approach. The extent to which it can keep this promise is another matter, of course. For it to do so, it will never be enough just to offer different pathways through a digitalised coursebook (or its equivalent). Much, much more content will be needed: at least five or six times the content of a one-size-fits-all coursebook. At the moment, there is little evidence of the necessary investment into content being made (quite the opposite, in fact), but the idea remains powerful nevertheless.

When it comes to philosophical compatibility, adaptive learning begins to run into difficulties. Despite the decades of edging towards more communicative approaches in language teaching, research (e.g. the research into English teaching in Turkey described in a previous post), suggests that teachers still see explanation and explication as key functions of their jobs. They believe that they know their students best and they know what is best for them. Big data adaptive learning challenges these beliefs head on. It is no doubt for this reason that companies like Knewton make such a point of claiming that their technology is there to help teachers. But Jose Ferreira doth protest too much, methinks. Platform-delivered adaptive learning is a direct threat to teachers’ professionalism, their salaries and their jobs.

Occupational realism is more problematic still. Very, very few language teachers around the world have any experience of truly blended learning, and it’s very difficult to envisage precisely what it is that the teacher should be doing in a classroom. Publishers moving towards larger-scale blended adaptive materials know that this is a big problem, and are actively looking at ways of packaging teacher training / teacher development (with a specific focus on blended contexts) into the learner-facing materials that they sell. But the problem won’t go away. Education ministries have a long history of throwing money at technological ‘solutions’ without thinking about obtaining the necessary buy-in from their employees. It is safe to predict that this is something that is unlikely to change. Moreover, learning how to become a blended teacher is much harder than learning, say, how to make good use of an interactive whiteboard. Since there are as many different blended adaptive approaches as there are different educational contexts, there cannot be (irony of ironies) a one-size-fits-all approach to training teachers to make good use of this software.

Finally, how transportable is big data adaptive learning? Not very, is the short answer, and for the same reasons that ‘occupational realism’ is highly problematic.

Looking at things through Jack Schneider’s lens, we might be tempted to come to the conclusion that the future for adaptive learning is a rocky path, at best. But Schneider doesn’t take political or economic considerations into account. Sternberg’s ‘Triarchic Theory’ never had the OECD or the Gates Foundation backing it up. It never had millions and millions of dollars of investment behind it. As we know from political elections (and the big data adaptive learning issue is a profoundly political one), big bucks can buy opinions.

It may also prove to be the case that the opinions of teachers don’t actually matter much. If the big adaptive bucks can win the educational debate at the highest policy-making levels, teachers will be the first victims of the ‘creative disruption’ that adaptivity promises. If you don’t believe me, just look at what is going on in the U.S.

There are causes for concern, but I don’t want to sound too alarmist. Nobody really has a clue whether big data adaptivity will actually work in language learning terms. It remains more of a theory than a research-endorsed practice. And to end on a positive note, regardless of how sticky it proves to be, it might just provide the shot-in-the-arm realisation that language teachers, at their best, are a lot more than competent explainers of grammar or deliverers of gap-fills.

There are a number of reasons why we sometimes need to describe a person’s language competence using a single number. Most of these are connected to the need for a shorthand to differentiate people, in summative testing or in job selection, for example. Numerical (or grade) allocation of this kind is so common (and especially in times when accountability is greatly valued) that it is easy to believe that this number is an objective description of a concrete entity, rather than a shorthand description of an abstract concept. In the process, the abstract concept (language competence) becomes reified and there is a tendency to stop thinking about what it actually is.

Language is messy. It’s a complex, adaptive system of communication which has a fundamentally social function. As Diane Larsen-Freeman and others have argued patterns of use strongly affect how language is acquired, is used, and changes. These processes are not independent of one another but are facets of the same complex adaptive system. […] The system consists of multiple agents (the speakers in the speech community) interacting with one another [and] the structures of language emerge from interrelated patterns of experience, social interaction, and cognitive mechanisms.

As such, competence in language use is difficult to measure. There are ways of capturing some of it. Think of the pages and pages of competency statements in the Common European Framework, but there has always been something deeply unsatisfactory about documents of this kind. How, for example, are we supposed to differentiate, exactly and objectively, between, say, can participate fully in an interview (C1) and can carry out an effective, fluent interview (B2)? The short answer is that we can’t. There are too many of these descriptors anyway and, even if we did attempt to use such a detailed tool to describe language competence, we would still be left with a very incomplete picture. There is at least one whole book devoted to attempts to test the untestable in language education (edited by Amos Paran and Lies Sercu, Multilingual Matters, 2010).

So, here is another reason why we are tempted to use shorthand numerical descriptors (such as A1, A2, B1, etc.) to describe something which is very complex and abstract (‘overall language competence’) and to reify this abstraction in the process. From there, it is a very short step to making things even more numerical, more scientific-sounding. Number-creep in recent years has brought us the Pearson Global Scale of English which can place you at a precise point on a scale from 10 to 90. Not to be outdone, Cambridge English Language Assessment now has a scale that runs from 80 points to 230, although Cambridge does, at least, allocate individual scores for four language skills.

As the title of this post suggests (in its reference to Stephen Jay Gould’s The Mismeasure of Man), I am suggesting that there are parallels between attempts to measure language competence and the sad history of attempts to measure ‘general intelligence’. Both are guilty of the twin fallacies of reification and ranking – the ordering of complex information as a gradual ascending scale. These conceptual fallacies then lead us, through the way that they push us to think about language, into making further conceptual errors about language learning. We start to confuse language testing with the ways that language learning can be structured.

We begin to granularise language. We move inexorably away from difficult-to-measure hazy notions of language skills towards what, on the surface at least, seem more readily measurable entities: words and structures. We allocate to them numerical values on our testing scales, so that an individual word can be deemed to be higher or lower on the scale than another word. And then we have a syllabus, a synthetic syllabus, that lends itself to digital delivery and adaptive manipulation. We find ourselves in a situation where materials writers for Pearson, writing for a particular ‘level’, are only allowed to use vocabulary items and grammatical structures that correspond to that ‘level’. We find ourselves, in short, in a situation where the acquisition of a complex and messy system is described as a linear, additive process. Here’s an example from the Pearson website: If you score 29 on the scale, you should be able to identify and order common food and drink from a menu; at 62, you should be able to write a structured review of a film, book or play. And because the GSE is so granular in nature, you can conquer smaller steps more often; and you are more likely to stay motivated as you work towards your goal. It’s a nonsense, a nonsense that is dictated by the needs of testing and adaptive software, but the sciency-sounding numbers help to hide the conceptual fallacies that lie beneath.

Perhaps, though, this doesn’t matter too much for most language learners. In the early stages of language learning (where most language learners are to be found), there are countless millions of people who don’t seem to mind the granularised programmes of Duolingo or Rosetta Stone, or the Grammar McNuggets of coursebooks. In these early stages, anything seems to be better than nothing, and the testing is relatively low-stakes. But as a learner’s interlanguage becomes more complex, and as the language she needs to acquire becomes more complex, attempts to granularise it and to present it in a linearly additive way become more problematic. It is for this reason, I suspect, that the appeal of granularised syllabuses declines so rapidly the more progress a learner makes. It comes as no surprise that, the further up the scale you get, the more that both teachers and learners want to get away from pre-determined syllabuses in coursebooks and software.

Adaptive language learning software is continuing to gain traction in the early stages of learning, in the initial acquisition of basic vocabulary and structures and in coming to grips with a new phonological system. It will almost certainly gain even more. But the challenge for the developers and publishers will be to find ways of making adaptive learning work for more advanced learners. Can it be done? Or will the mismeasure of language make it impossible?

It’s a good time to be in Turkey if you have digital ELT products to sell. Not so good if you happen to be an English language learner. This post takes a look at both sides of the Turkish lira.

OUP, probably the most significant of the big ELT publishers in Turkey, recorded ‘an outstanding performance’ in the country in the last financial year, making it their 5th largest ELT market. OUP’s annual report for 2013 – 2014 describes the particularly strong demand for digital products and services, a demand which is now influencing OUP’s global strategy for digital resources. When asked about the future of ELT, Peter Marshall , Managing Director of OUP’s ELT Division, suggested that Turkey was a country that could point us in the direction of an answer to the question. Marshall and OUP will be hoping that OUP’s recently launched Digital Learning Platform (DLP) ‘for the global distribution of adult and secondary ELT materials’ will be an important part of that future, in Turkey and elsewhere. I can’t think of any good reason for doubting their belief.

tbl-ipad1OUP aren’t the only ones eagerly checking the pound-lira exchange rates. For the last year, CUP also reported ‘significant sales successes’ in Turkey in their annual report . For CUP, too, it was a year in which digital development has been ‘a top priority’. CUP’s Turkish success story has been primarily driven by a deal with Anadolu University (more about this below) to provide ‘a print and online solution to train 1.7 million students’ using their Touchstone course. This was the biggest single sale in CUP’s history and has inspired publishers, both within CUP and outside, to attempt to emulate the deal. The new blended products will, of course, be adaptive.

Just how big is the Turkish digital ELT pie? According to a 2014 report from Ambient Insight , revenues from digital ELT products reached $32.0 million in 2013. They are forecast to more than double to $72.6 million in 2018. This is a growth rate of 17.8%, a rate which is practically unbeatable in any large economy, and Turkey is the 17th largest economy in the world, according to World Bank statistics .

So, what makes Turkey special?

  • Turkey has a large and young population that is growing by about 1.4% each year, which is equivalent to approximately 1 million people. According to the Turkish Ministry of Education, there are currently about 5.5 million students enrolled in upper-secondary schools. Significant growth in numbers is certain.
  • Turkey is currently in the middle of a government-sponsored $990 million project to increase the level of English proficiency in schools. The government’s target is to position the country as one of the top ten global economies by 2023, the centenary of the Turkish Republic, and it believes that this position will be more reachable if it has a population with the requisite foreign language (i.e. English) skills. As part of this project, the government has begun to introduce English in the 1st grade (previously it was in the 4th grade).
  • The level of English in Turkey is famously low and has been described as a ‘national weakness’. In October/November 2011, the Turkish research institute SETA and the Turkish Ministry for Youth and Sports conducted a large survey across Turkey of 10,174 young citizens, aged 15 to 29. The result was sobering: 59 per cent of the young people said they “did not know any foreign language.” A recent British Council report (2013) found the competence level in English of most (90+%) students across Turkey was evidenced as rudimentary – even after 1000+ hours (estimated at end of Grade 12) of English classes. This is, of course, good news for vendors of English language learning / teaching materials.
  • Turkey has launched one of the world’s largest educational technology projects: the FATIH Project (The Movement to Enhance Opportunities and Improve Technology). One of its objectives is to provide tablets for every student between grades 5 and 12. At the same time, according to the Ambient report , the intention is to ‘replace all print-based textbooks with digital content (both eTextbooks and online courses).’
  • Purchasing power in Turkey is concentrated in a relatively small number of hands, with the government as the most important player. Institutions are often very large. Anadolu University, for example, is the second largest university in the world, with over 2 million students, most of whom are studying in virtual classrooms. There are two important consequences of this. Firstly, it makes scalable, big-data-driven LMS-delivered courses with adaptive software a more attractive proposition to purchasers. Secondly, it facilitates the B2B sales model that is now preferred by vendors (including the big ELT publishers).
  • Turkey also has a ‘burgeoning private education sector’, according to Peter Marshall, and a thriving English language school industry. According to Ambient ‘commercial English language learning in Turkey is a $400 million industry with over 600 private schools across the country’. Many of these are grouped into large chains (see the bullet point above).
  • Turkey is also ‘in the vanguard of the adoption of educational technology in ELT’, according to Peter Marshall. With 36 million internet users, the 5th largest internet population in Europe, and the 3rd highest online engagement in Europe, measured by time spent online, (reported by Sina Afra ), the country’s enthusiasm for educational technology is not surprising. Ambient reports that ‘the growth rate for mobile English educational apps is 27.3%’. This enthusiasm is reflected in Turkey’s thriving ELT conference scene. The most popular conference themes and conference presentations are concerned with edtech. A keynote speech by Esat Uğurlu at the ISTEK schools 3rd international ELT conference at Yeditepe in April 2013 gives a flavour of the current interests. The talk was entitled ‘E-Learning: There is nothing to be afraid of and plenty to discover’.

All of the above makes Turkey a good place to be if you’re selling digital ELT products, even though the competition is pretty fierce. If your product isn’t adaptive, personalized and gamified, you may as well not bother.

What impact will all this have on Turkey’s English language learners? A report co-produced by TEPAV (the Economic Policy Research Foundation of Turkey) and the British Council in November 2013 suggests some of the answers, at least in the school population. The report  is entitled ‘Turkey National Needs Assessment of State School English Language Teaching’ and its Executive Summary is brutally frank in its analysis of the low achievements in English language learning in the country. It states:

The teaching of English as a subject and not a language of communication was observed in all schools visited. This grammar-based approach was identified as the first of five main factors that, in the opinion of this report, lead to the failure of Turkish students to speak/ understand English on graduation from High School, despite having received an estimated 1000+ hours of classroom instruction.

In all classes observed, students fail to learn how to communicate and function independently in English. Instead, the present teacher-centric, classroom practice focuses on students learning how to answer teachers’ questions (where there is only one, textbook-type ‘right’ answer), how to complete written exercises in a textbook, and how to pass a grammar-based test. Thus grammar-based exams/grammar tests (with right/wrong answers) drive the teaching and learning process from Grade 4 onwards. This type of classroom practice dominates all English lessons and is presented as the second causal factor with respect to the failure of Turkish students to speak/understand English.

The problem, in other words, is the curriculum and the teaching. In its recommendations, the report makes this crystal clear. Priority needs to be given to developing a revised curriculum and ‘a comprehensive and sustainable system of in-service teacher training for English teachers’. Curriculum renewal and programmes of teacher training / development are the necessary prerequisites for the successful implementation of a programme of educational digitalization. Unfortunately, research has shown again and again that these take a long time and outcomes are difficult to predict in advance.

By going for digitalization first, Turkey is taking a huge risk. What LMSs, adaptive software and most apps do best is the teaching of language knowledge (grammar and vocabulary), not the provision of opportunities for communicative practice (for which there is currently no shortage of opportunity … it is just that these opportunities are not being taken). There is a real danger, therefore, that the technology will push learning priorities in precisely the opposite direction to that which is needed. Without significant investments in curriculum reform and teacher training, how likely is it that the transmission-oriented culture of English language teaching and learning will change?

Even if the money for curriculum reform and teacher training were found, it is also highly unlikely that effective country-wide approaches to blended learning for English would develop before the current generation of tablets and their accompanying content become obsolete.

Sadly, the probability is, once more, that educational technology will be a problem-changer, even a problem-magnifier, rather than a problem-solver. I’d love to be wrong.

2014-09-30_2216Jose Ferreira, the fast-talking sales rep-in-chief of Knewton, likes to dazzle with numbers. In a 2012 talk hosted by the US Department of Education, Ferreira rattles off the stats: So Knewton students today, we have about 125,000, 180,000 right now, by December it’ll be 650,000, early next year it’ll be in the millions, and next year it’ll be close to 10 million. And that’s just through our Pearson partnership. For each of these students, Knewton gathers millions of data points every day. That, brags Ferreira, is five orders of magnitude more data about you than Google has. … We literally have more data about our students than any company has about anybody else about anything, and it’s not even close. With just a touch of breathless exaggeration, Ferreira goes on: We literally know everything about what you know and how you learn best, everything.

The data is mined to find correlations between learning outcomes and learning behaviours, and, once correlations have been established, learning programmes can be tailored to individual students. Ferreira explains: We take the combined data problem all hundred million to figure out exactly how to teach every concept to each kid. So the 100 million first shows up to learn the rules of exponents, great let’s go find a group of people who are psychometrically equivalent to that kid. They learn the same ways, they have the same learning style, they know the same stuff, because Knewton can figure out things like you learn math best in the morning between 8:40 and 9:13 am. You learn science best in 42 minute bite sizes the 44 minute mark you click right, you start missing questions you would normally get right.

The basic premise here is that the more data you have, the more accurately you can predict what will work best for any individual learner. But how accurate is it? In the absence of any decent, independent research (or, for that matter, any verifiable claims from Knewton), how should we respond to Ferreira’s contribution to the White House Education Datapalooza?

A 51Oy5J3o0yL._AA258_PIkin4,BottomRight,-46,22_AA280_SH20_OU35_new book by Stephen Finlay, Predictive Analytics, Data Mining and Big Data (Palgrave Macmillan, 2014) suggests that predictive analytics are typically about 20 – 30% more accurate than humans attempting to make the same judgements. That’s pretty impressive and perhaps Knewton does better than that, but the key thing to remember is that, however much data Knewton is playing with, and however good their algorithms are, we are still talking about predictions and not certainties. If an adaptive system could predict with 90% accuracy (and the actual figure is typically much lower than that) what learning content and what learning approach would be effective for an individual learner, it would still mean that it was wrong 10% of the time. When this is scaled up to the numbers of students that use Knewton software, it means that millions of students are getting faulty recommendations. Beyond a certain point, further expansion of the data that is mined is unlikely to make any difference to the accuracy of predictions.

A further problem identified by Stephen Finlay is the tendency of people in predictive analytics to confuse correlation and causation. Certain students may have learnt maths best between 8.40 and 9.13, but it does not follow that they learnt it best because they studied at that time. If strong correlations do not involve causality, then actionable insights (such as individualised course design) can be no more than an informed gamble.

Knewton’s claim that they know how every student learns best is marketing hyperbole and should set alarm bells ringing. When it comes to language learning, we simply do not know how students learn (we do not have any generally accepted theory of second language acquisition), let alone how they learn best. More data won’t help our theories of learning! Ferreira’s claim that, with Knewton, every kid gets a perfectly optimized textbook, except it’s also video and other rich media dynamically generated in real time is equally preposterous, not least since the content of the textbook will be at least as significant as the way in which it is ‘optimized’. And, as we all know, textbooks have their faults.

Cui bono? Perhaps huge data and predictive analytics will benefit students; perhaps not. We will need to wait and find out. But Stephen Finlay reminds us that in gold rushes (and internet booms and the exciting world of Big Data) the people who sell the tools make a lot of money. Far more strike it rich selling picks and shovels to prospectors than do the prospectors. Likewise, there is a lot of money to be made selling Big Data solutions. Whether the buyer actually gets any benefit from them is not the primary concern of the sales people. (p.16/17) Which is, perhaps, one of the reasons that some sales people talk so fast.

There is a lot that technology can do to help English language learners develop their reading skills. The internet makes it possible for learners to read an almost limitless number of texts that will interest them, and these texts can evaluated for readability and, therefore, suitability for level (see here for a useful article). RSS opens up exciting possibilities for narrow reading and the positive impact of multimedia-enhanced texts was researched many years ago. There are good online bilingual dictionaries and other translation tools. There are apps that go with graded readers (see this review in the Guardian) and there are apps that can force you to read at a certain speed. And there is more. All of this could very effectively be managed on a good learning platform.

Could adaptive software add another valuable element to reading skills development?

Adaptive reading programs are spreading in the US in primary education, and, with some modifications, could be used in ELT courses for younger learners and for those who do not have the Roman alphabet. One of the most well-known has been developed by Lexia Learning®, a company that won a $500,000 grant from the Gates Foundation last year. Lexia Learning® was bought by Rosetta Stone® for $22.5 million in June 2013.

One of their products, Lexia Reading Core5, ‘provides explicit, systematic, personalized learning in the six areas of reading instruction, and delivers norm-referenced performance data and analysis without interrupting the flow of instruction to administer a test. Designed specifically to meet the Common Core and the most rigorous state standards, this research-proven, technology-based approach accelerates reading skills development, predicts students’ year-end performance and provides teachers data-driven action plans to help differentiate instruction’.

core5-ss-small

The predictable claim that it is ‘research-proven’ has not convinced everyone. Richard Allington, a professor of literacy studies at the University of Tennessee and a past president of both the International Reading Association and the National Reading Association, has said that all the companies that have developed this kind of software ‘come up with evidence – albeit potential evidence — that kids could improve their abilities to read by using their product. It’s all marketing. They’re selling a product. Lexia is one of these programs. But there virtually are no commercial programs that have any solid, reliable evidence that they improve reading achievement.’[1] He has argued that the $12 million that has been spent on the Lexia programs would have been better spent on a national program, developed at Ohio State University, that matches specially trained reading instructors with students known to have trouble learning to read.

But what about ELT? For an adaptive program like Lexia’s to work, reading skills need to be broken down in a similar way to the diagram shown above. Let’s get some folk linguistics out of the way first. The sub-skills of reading are not skimming, scanning, inferring meaning from context, etc. These are strategies that readers adopt voluntarily in order to understand a text better. If a reader uses these strategies in their own language, they are likely to transfer these strategies to their English reading. It seems that ELT instruction in strategy use has only limited impact, although this kind of training may be relevant to preparation for exams. This insight is taking a long time to filter down to course and coursebook design, but there really isn’t much debate[2]. Any adaptive ELT reading program that confuses reading strategies with reading sub-skills is going to have big problems.

What, then, are the sub-skills of reading? In what ways could reading be broken down into a skill tree so that it is amenable to adaptive learning? Researchers have provided different answers. Munby (1978), for example, listed 19 reading microskills, Heaton (1988) listed 14. However, a bigger problem is that other researchers (e.g. Lunzer 1979, Rost 1993) have failed to find evidence that distinct sub-skills actually exist. While it is easier to identify sub-skills for very low level readers (especially for those whose own language is very different from English), it is simply not possible to do so for higher levels.

Reading in another language is a complex process which involves both top-down and bottom-up strategies, is intimately linked to vocabulary knowledge and requires the activation of background, cultural knowledge. Reading ability, in the eyes of some researchers, is unitary or holistic. Others prefer to separate things into two components: word recognition and comprehension[3]. Either way, a consensus is beginning to emerge that teachers and learners might do better to focus on vocabulary extension (and this would include extensive reading) than to attempt to develop reading programs that assume the multidivisible nature of reading.

All of which means that adaptive learning software and reading skills in ELT are unlikely bedfellows. To be sure, an increased use of technology (as described in the first paragraph of this post) in reading work will generate a lot of data about learner behaviours. Analysis of this data may lead to actionable insights, and it may not! It will be interesting to find out.

 

[1] http://www.khi.org/news/2013/jun/17/budget-proviso-reading-program-raises-questions/

[2] See, for example, Walter, C. & M. Swan. 2008. ‘Teaching reading skills: mostly a waste of time?’ in Beaven, B. (ed.) IATEFL 2008 Exeter Conference Selections. (Canterbury: IATEFL). Or go back further to Alderson, J. C. 1984 ‘Reading in a foreign language: a reading problem or a language problem?’ in J.C. Alderson & A. H. Urquhart (eds.) Reading in a Foreign Language (London: Longman)

[3] For a useful summary of these issues, see ‘Reading abilities and strategies: a short introduction’ by Feng Liu (International Education Studies 3 / 3 August 2010) www.ccsenet.org/journal/index.php/ies/article/viewFile/6790/5321