Posts Tagged ‘tablets’

Back in the middle of the last century, the first interactive machines for language teaching appeared. Previously, there had been phonograph discs and wire recorders (Ornstein, 1968: 401), but these had never really taken off. This time, things were different. Buoyed by a belief in the power of technology, along with the need (following the Soviet Union’s successful Sputnik programme) to demonstrate the pre-eminence of the United States’ technological expertise, the interactive teaching machines that were used in programmed instruction promised to revolutionize language learning (Valdman, 1968: 1). From coast to coast, ‘tremors of excitement ran through professional journals and conferences and department meetings’ (Kennedy, 1967: 871). The new technology was driven by hard science, supported and promoted by the one of the most well-known and respected psychologists and public intellectuals of the day (Skinner, 1961).

In classrooms, the machines acted as powerfully effective triggers in generating situational interest (Hidi & Renninger, 2006). Even more exciting than the mechanical teaching machines were the computers that were appearing on the scene. ‘Lick’ Licklider, a pioneer in interactive computing at the Advanced Research Projects Agency in Arlington, Virginia, developed an automated drill routine for learning German by hooking up a computer, two typewriters, an oscilloscope and a light pen (Noble, 1991: 124). Students loved it, and some would ‘go on and on, learning German words until they were forced by scheduling to cease their efforts’. Researchers called the seductive nature of the technology ‘stimulus trapping’, and Licklider hoped that ‘before [the student] gets out from under the control of the computer’s incentives, [they] will learn enough German words’ (Noble, 1991: 125).

With many of the developed economies of the world facing a critical shortage of teachers, ‘an urgent pedagogical emergency’ (Hof, 2018), the new approach was considered to be extremely efficient and could equalise opportunity in schools across the country. It was ‘here to stay: [it] appears destined to make progress that could well go beyond the fondest dreams of its originators […] an entire industry is just coming into being and significant sales and profits should not be too long in coming’ (Kozlowski, 1961: 47).

Unfortunately, however, researchers and entrepreneurs had massively underestimated the significance of novelty effects. The triggered situational interest of the machines did not lead to intrinsic individual motivation. Students quickly tired of, and eventually came to dislike, programmed instruction and the machines that delivered it (McDonald et al.: 2005: 89). What’s more, the machines were expensive and ‘research studies conducted on its effectiveness showed that the differences in achievement did not constantly or substantially favour programmed instruction over conventional instruction (Saettler, 2004: 303). Newer technologies, with better ‘stimulus trapping’, were appearing. Programmed instruction lost its backing and disappeared, leaving as traces only its interest in clearly defined learning objectives, the measurement of learning outcomes and a concern with the efficiency of learning approaches.

Hot on the heels of programmed instruction came the language laboratory. Futuristic in appearance, not entirely unlike the deck of the starship USS Enterprise which launched at around the same time, language labs captured the public imagination and promised to explore the final frontiers of language learning. As with the earlier teaching machines, students were initially enthusiastic. Even today, when language labs are introduced into contexts where they may be perceived as new technology, they can lead to high levels of initial motivation (e.g. Ramganesh & Janaki, 2017).

Given the huge investments into these labs, it’s unfortunate that initial interest waned fast. By 1969, many of these rooms had turned into ‘“electronic graveyards,” sitting empty and unused, or perhaps somewhat glorified study halls to which students grudgingly repair to don headphones, turn down the volume, and prepare the next period’s history or English lesson, unmolested by any member of the foreign language faculty’ (Turner, 1969: 1, quoted in Roby, 2003: 527). ‘Many second language students shudder[ed] at the thought of entering into the bowels of the “language laboratory” to practice and perfect the acoustical aerobics of proper pronunciation skills. Visions of sterile white-walled, windowless rooms, filled with endless bolted-down rows of claustrophobic metal carrels, and overseen by a humorless, lab director, evoke[d] fear in the hearts of even the most stout-hearted prospective second-language learners (Wiley, 1990: 44).

By the turn of this century, language labs had mostly gone, consigned to oblivion by the appearance of yet newer technology: the internet, laptops and smartphones. Education had been on the brink of being transformed through new learning technologies for decades (Laurillard, 2008: 1), but this time it really was different. It wasn’t just one technology that had appeared, but a whole slew of them: ‘artificial intelligence, learning analytics, predictive analytics, adaptive learning software, school management software, learning management systems (LMS), school clouds. No school was without these and other technologies branded as ‘superintelligent’ by the late 2020s’ (Macgilchrist et al., 2019). The hardware, especially phones, was ubiquitous and, therefore, free. Unlike teaching machines and language laboratories, students were used to using the technology and expected to use their devices in their studies.

A barrage of publicity, mostly paid for by the industry, surrounded the new technologies. These would ‘meet the demands of Generation Z’, the new generation of students, now cast as consumers, who ‘were accustomed to personalizing everything’.  AR, VR, interactive whiteboards, digital projectors and so on made it easier to ‘create engaging, interactive experiences’. The ‘New Age’ technologies made learning fun and easy,  ‘bringing enthusiasm among the students, improving student engagement, enriching the teaching process, and bringing liveliness in the classroom’. On top of that, they allowed huge amounts of data to be captured and sold, whilst tracking progress and attendance. In any case, resistance to digital technology, said more than one language teaching expert, was pointless (Styring, 2015).slide

At the same time, technology companies increasingly took on ‘central roles as advisors to national governments and local districts on educational futures’ and public educational institutions came to be ‘regarded by many as dispensable or even harmful’ (Macgilchrist et al., 2019).

But, as it turned out, the students of Generation Z were not as uniformly enthusiastic about the new technology as had been assumed, and resistance to digital, personalized delivery in education was not long in coming. In November 2018, high school students at Brooklyn’s Secondary School for Journalism staged a walkout in protest at their school’s use of Summit Learning, a web-based platform promoting personalized learning developed by Facebook. They complained that the platform resulted in coursework requiring students to spend much of their day in front of a computer screen, that made it easy to cheat by looking up answers online, and that some of their teachers didn’t have the proper training for the curriculum (Leskin, 2018). Besides, their school was in a deplorable state of disrepair, especially the toilets. There were similar protests in Kansas, where students staged sit-ins, supported by their parents, one of whom complained that ‘we’re allowing the computers to teach and the kids all looked like zombies’ before pulling his son out of the school (Bowles, 2019). In Pennsylvania and Connecticut, some schools stopped using Summit Learning altogether, following protests.

But the resistance did not last. Protesters were accused of being nostalgic conservatives and educationalists kept largely quiet, fearful of losing their funding from the Chan Zuckerberg Initiative (Facebook) and other philanthro-capitalists. The provision of training in grit, growth mindset, positive psychology and mindfulness (also promoted by the technology companies) was ramped up, and eventually the disaffected students became more quiescent. Before long, the data-intensive, personalized approach, relying on the tools, services and data storage of particular platforms had become ‘baked in’ to educational systems around the world (Moore, 2018: 211). There was no going back (except for small numbers of ultra-privileged students in a few private institutions).

By the middle of the century (2155), most students, of all ages, studied with interactive screens in the comfort of their homes. Algorithmically-driven content, with personalized, adaptive tests had become the norm, but the technology occasionally went wrong, leading to some frustration. One day, two young children discovered a book in their attic. Made of paper with yellow, crinkly pages, where ‘the words stood still instead of moving the way they were supposed to’. The book recounted the experience of schools in the distant past, where ‘all the kids from the neighbourhood came’, sitting in the same room with a human teacher, studying the same things ‘so they could help one another on the homework and talk about it’. Margie, the younger of the children at 11 years old, was engrossed in the book when she received a nudge from her personalized learning platform to return to her studies. But Margie was reluctant to go back to her fractions. She ‘was thinking about how the kids must have loved it in the old days. She was thinking about the fun they had’ (Asimov, 1951).

References

Asimov, I. 1951. The Fun They Had. Accessed September 20, 2019. http://web1.nbed.nb.ca/sites/ASD-S/1820/J%20Johnston/Isaac%20Asimov%20-%20The%20fun%20they%20had.pdf

Bowles, N. 2019. ‘Silicon Valley Came to Kansas Schools. That Started a Rebellion’ The New York Times, April 21. Accessed September 20, 2019. https://www.nytimes.com/2019/04/21/technology/silicon-valley-kansas-schools.html

Hidi, S. & Renninger, K.A. 2006. ‘The Four-Phase Model of Interest Development’ Educational Psychologist, 41 (2), 111 – 127

Hof, B. 2018. ‘From Harvard via Moscow to West Berlin: educational technology, programmed instruction and the commercialisation of learning after 1957’ History of Education, 47 (4): 445-465

Kennedy, R.H. 1967. ‘Before using Programmed Instruction’ The English Journal, 56 (6), 871 – 873

Kozlowski, T. 1961. ‘Programmed Teaching’ Financial Analysts Journal, 17 (6): 47 – 54

Laurillard, D. 2008. Digital Technologies and their Role in Achieving our Ambitions for Education. London: Institute for Education.

Leskin, P. 2018. ‘Students in Brooklyn protest their school’s use of a Zuckerberg-backed online curriculum that Facebook engineers helped build’ Business Insider, 12.11.18 Accessed 20 September 2019. https://www.businessinsider.de/summit-learning-school-curriculum-funded-by-zuckerberg-faces-backlash-brooklyn-2018-11?r=US&IR=T

McDonald, J. K., Yanchar, S. C. & Osguthorpe, R.T. 2005. ‘Learning from Programmed Instruction: Examining Implications for Modern Instructional Technology’ Educational Technology Research and Development, 53 (2): 84 – 98

Macgilchrist, F., Allert, H. & Bruch, A. 2019. ‚Students and society in the 2020s. Three future ‘histories’ of education and technology’. Learning, Media and Technology, https://www.tandfonline.com/doi/full/10.1080/17439884.2019.1656235 )

Moore, M. 2018. Democracy Hacked. London: Oneworld

Noble, D. D. 1991. The Classroom Arsenal. London: The Falmer Press

Ornstein, J. 1968. ‘Programmed Instruction and Educational Technology in the Language Field: Boon or Failure?’ The Modern Language Journal, 52 (7), 401 – 410

Ramganesh, E. & Janaki, S. 2017. ‘Attitude of College Teachers towards the Utilization of Language Laboratories for Learning English’ Asian Journal of Social Science Studies; Vol. 2 (1): 103 – 109

Roby, W.B. 2003. ‘Technology in the service of foreign language teaching: The case of the language laboratory’ In D. Jonassen (ed.), Handbook of Research on Educational Communications and Technology, 2nd ed.: 523 – 541. Mahwah, NJ.: Lawrence Erlbaum Associates

Saettler, P. 2004. The Evolution of American Educational Technology. Greenwich, Conn.: Information Age Publishing

Skinner, B. F. 1961. ‘Teaching Machines’ Scientific American, 205(5), 90-107

Styring, J. 2015. Engaging Generation Z. Cambridge English webinar 2015 https://www.youtube.com/watch?time_continue=4&v=XCxl4TqgQZA

Valdman, A. 1968. ‘Programmed Instruction versus Guided Learning in Foreign Language Acquisition’ Die Unterrichtspraxis / Teaching German, 1 (2), 1 – 14.

Wiley, P. D. 1990. ‘Language labs for 1990: User-friendly, expandable and affordable’. Media & Methods, 27(1), 44–47)

jenny-holzer-untitled-protect-me-from-what-i-want-text-displayed-in-times-square-nyc-1982

Jenny Holzer, Protect me from what I want

It’s a good time to be in Turkey if you have digital ELT products to sell. Not so good if you happen to be an English language learner. This post takes a look at both sides of the Turkish lira.

OUP, probably the most significant of the big ELT publishers in Turkey, recorded ‘an outstanding performance’ in the country in the last financial year, making it their 5th largest ELT market. OUP’s annual report for 2013 – 2014 describes the particularly strong demand for digital products and services, a demand which is now influencing OUP’s global strategy for digital resources. When asked about the future of ELT, Peter Marshall , Managing Director of OUP’s ELT Division, suggested that Turkey was a country that could point us in the direction of an answer to the question. Marshall and OUP will be hoping that OUP’s recently launched Digital Learning Platform (DLP) ‘for the global distribution of adult and secondary ELT materials’ will be an important part of that future, in Turkey and elsewhere. I can’t think of any good reason for doubting their belief.

tbl-ipad1OUP aren’t the only ones eagerly checking the pound-lira exchange rates. For the last year, CUP also reported ‘significant sales successes’ in Turkey in their annual report . For CUP, too, it was a year in which digital development has been ‘a top priority’. CUP’s Turkish success story has been primarily driven by a deal with Anadolu University (more about this below) to provide ‘a print and online solution to train 1.7 million students’ using their Touchstone course. This was the biggest single sale in CUP’s history and has inspired publishers, both within CUP and outside, to attempt to emulate the deal. The new blended products will, of course, be adaptive.

Just how big is the Turkish digital ELT pie? According to a 2014 report from Ambient Insight , revenues from digital ELT products reached $32.0 million in 2013. They are forecast to more than double to $72.6 million in 2018. This is a growth rate of 17.8%, a rate which is practically unbeatable in any large economy, and Turkey is the 17th largest economy in the world, according to World Bank statistics .

So, what makes Turkey special?

  • Turkey has a large and young population that is growing by about 1.4% each year, which is equivalent to approximately 1 million people. According to the Turkish Ministry of Education, there are currently about 5.5 million students enrolled in upper-secondary schools. Significant growth in numbers is certain.
  • Turkey is currently in the middle of a government-sponsored $990 million project to increase the level of English proficiency in schools. The government’s target is to position the country as one of the top ten global economies by 2023, the centenary of the Turkish Republic, and it believes that this position will be more reachable if it has a population with the requisite foreign language (i.e. English) skills. As part of this project, the government has begun to introduce English in the 1st grade (previously it was in the 4th grade).
  • The level of English in Turkey is famously low and has been described as a ‘national weakness’. In October/November 2011, the Turkish research institute SETA and the Turkish Ministry for Youth and Sports conducted a large survey across Turkey of 10,174 young citizens, aged 15 to 29. The result was sobering: 59 per cent of the young people said they “did not know any foreign language.” A recent British Council report (2013) found the competence level in English of most (90+%) students across Turkey was evidenced as rudimentary – even after 1000+ hours (estimated at end of Grade 12) of English classes. This is, of course, good news for vendors of English language learning / teaching materials.
  • Turkey has launched one of the world’s largest educational technology projects: the FATIH Project (The Movement to Enhance Opportunities and Improve Technology). One of its objectives is to provide tablets for every student between grades 5 and 12. At the same time, according to the Ambient report , the intention is to ‘replace all print-based textbooks with digital content (both eTextbooks and online courses).’
  • Purchasing power in Turkey is concentrated in a relatively small number of hands, with the government as the most important player. Institutions are often very large. Anadolu University, for example, is the second largest university in the world, with over 2 million students, most of whom are studying in virtual classrooms. There are two important consequences of this. Firstly, it makes scalable, big-data-driven LMS-delivered courses with adaptive software a more attractive proposition to purchasers. Secondly, it facilitates the B2B sales model that is now preferred by vendors (including the big ELT publishers).
  • Turkey also has a ‘burgeoning private education sector’, according to Peter Marshall, and a thriving English language school industry. According to Ambient ‘commercial English language learning in Turkey is a $400 million industry with over 600 private schools across the country’. Many of these are grouped into large chains (see the bullet point above).
  • Turkey is also ‘in the vanguard of the adoption of educational technology in ELT’, according to Peter Marshall. With 36 million internet users, the 5th largest internet population in Europe, and the 3rd highest online engagement in Europe, measured by time spent online, (reported by Sina Afra ), the country’s enthusiasm for educational technology is not surprising. Ambient reports that ‘the growth rate for mobile English educational apps is 27.3%’. This enthusiasm is reflected in Turkey’s thriving ELT conference scene. The most popular conference themes and conference presentations are concerned with edtech. A keynote speech by Esat Uğurlu at the ISTEK schools 3rd international ELT conference at Yeditepe in April 2013 gives a flavour of the current interests. The talk was entitled ‘E-Learning: There is nothing to be afraid of and plenty to discover’.

All of the above makes Turkey a good place to be if you’re selling digital ELT products, even though the competition is pretty fierce. If your product isn’t adaptive, personalized and gamified, you may as well not bother.

What impact will all this have on Turkey’s English language learners? A report co-produced by TEPAV (the Economic Policy Research Foundation of Turkey) and the British Council in November 2013 suggests some of the answers, at least in the school population. The report  is entitled ‘Turkey National Needs Assessment of State School English Language Teaching’ and its Executive Summary is brutally frank in its analysis of the low achievements in English language learning in the country. It states:

The teaching of English as a subject and not a language of communication was observed in all schools visited. This grammar-based approach was identified as the first of five main factors that, in the opinion of this report, lead to the failure of Turkish students to speak/ understand English on graduation from High School, despite having received an estimated 1000+ hours of classroom instruction.

In all classes observed, students fail to learn how to communicate and function independently in English. Instead, the present teacher-centric, classroom practice focuses on students learning how to answer teachers’ questions (where there is only one, textbook-type ‘right’ answer), how to complete written exercises in a textbook, and how to pass a grammar-based test. Thus grammar-based exams/grammar tests (with right/wrong answers) drive the teaching and learning process from Grade 4 onwards. This type of classroom practice dominates all English lessons and is presented as the second causal factor with respect to the failure of Turkish students to speak/understand English.

The problem, in other words, is the curriculum and the teaching. In its recommendations, the report makes this crystal clear. Priority needs to be given to developing a revised curriculum and ‘a comprehensive and sustainable system of in-service teacher training for English teachers’. Curriculum renewal and programmes of teacher training / development are the necessary prerequisites for the successful implementation of a programme of educational digitalization. Unfortunately, research has shown again and again that these take a long time and outcomes are difficult to predict in advance.

By going for digitalization first, Turkey is taking a huge risk. What LMSs, adaptive software and most apps do best is the teaching of language knowledge (grammar and vocabulary), not the provision of opportunities for communicative practice (for which there is currently no shortage of opportunity … it is just that these opportunities are not being taken). There is a real danger, therefore, that the technology will push learning priorities in precisely the opposite direction to that which is needed. Without significant investments in curriculum reform and teacher training, how likely is it that the transmission-oriented culture of English language teaching and learning will change?

Even if the money for curriculum reform and teacher training were found, it is also highly unlikely that effective country-wide approaches to blended learning for English would develop before the current generation of tablets and their accompanying content become obsolete.

Sadly, the probability is, once more, that educational technology will be a problem-changer, even a problem-magnifier, rather than a problem-solver. I’d love to be wrong.